Abstract:
The pillar structure according to the invention has a substantially longer surface path length from negative to positive electrodes resist breakdown in a high voltage environment. The processing and assembly methods in this invention permit low-cost manufacturing of high breakdown-voltage, dielectric pillars for the flat panel display.
Abstract:
A diamond body, such as a CVD diamond film, is etched by immersion of the body in a molten or partially molten metal, such as the rare earth metal La or Ce. While the body is being etched, various portions of a major surface of the body can be protected for various time durations by masks against the etching--whereby, after dicing the body, the resulting dies can be used as submounts for lasers with feedback.
Abstract:
The present invention relates to an optical fiber cable which includes magnetically locatable materials within the sheath system thereby allowing the cable to be located after it has been buried. More specifically, at least a portion of the magnetic particles are purposely oriented in a particular alignment based on their magnetic properties. Such an arrangement not only allows the generation of a detection signal which is distinguishable from that generated by a solid metallic pipe, but also can greatly enhance the level of the detection signal generated. The enhanced detection signal provides for more reliable detection of buried all-dielectric cables and also allows them to be located even when buried at greater depths, such as six feet or more. In specific embodiments of the present invention, the magnetic particles may be aligned and/or magnetized either longitudinally, vertically or transversely relative to the cable. Additionally, these various directions of alignment and magnetization may be alternated along the length of the cable to further enhance the detection signal generated in order to establish a means of accurately and cost-effectively locating communications cable after they are buried.
Abstract:
In accordance with the present invention, a tactile sensor capable of detecting shear force comprises an anisotropically conductive material disposed between a conductive cursor and an array of contacts. In one preferred embodiment, the anisotropic material is affixed to the contact array, and the cursor is affixed to an elastomeric skin overlying the material. Movement of the cursor is detected by interconnection of the contacts underlying the cursor. In a second embodiment, the anisotropic material is affixed to the cursor but is free to move over the contact array in response to shear force. Movement of the cursor is detected by interconnection of the underlying contacts. Such arrangements can also detect pressure and temperature.
Abstract:
The disclosed method can produce high T.sub.c superconductor material e.g., YBa.sub.2 Cu.sub.3 O.sub.7) of substantially increased intra-grain critical current density (J'.sub.c), as compared to conventionally produced bulk material of analogous composition. Exemplarily, YBa.sub.2 Cu.sub.3 O.sub.7 pellets produced according to the invention had J'.sub.c of about 10.sup.5 A/cm.sup.2 at 77 K. in an applied magnetic field of 0.9 Telsa. The inventive method comprises providing a precursor material whose composition differs from that of the desired superconductor with respect to at least one of the metal constituents of the desired superconductor. It further comprises heating the precursor material above the decomposition temperature (T.sub.d) of the precursor material such that a multiphase material results. The multiphase material comprises, in addition to a majority first phase, a dispersed precipitate phase. The method further comprises cooling the multiphase material to a temperature below T.sub.d at a rate such that at least a major portion of the precipitate phase is retained. The first phase differs from the desired superconductor at most with regard to oxygen content, and the heat treatment of the multiphase material is carried out such that the desired superconductor results. Exemplarily, the desired superconductor is YBa.sub.2 Cu.sub.3 O.sub.7, the precursor material has average composition YBa.sub.2 Cu.sub.4 O.sub.z (z.about.8), the precipitate phase comprises one or more copper oxides, T.sub.d is about 860.degree. C., and the multiphase material is produced at 920.degree. C.
Abstract:
A compressible thermally conductive member comprises a polymer field with thermally conducting-magnetically aligned particles comprising a base portion and a multiplicity of protrusions extending from at least one surface of the base portion.
Abstract:
An electrical interconnection medium is made as a composite of electrically conducting, magnetic particles in a nonconductive matrix material. Particles are magnetically aligned into a network which extends in at least two dimensions as, e.g., in a sheet or layer medium. A layer medium may further include additional, larger conductive particles which may be magnetically aligned into columns extending the thickness of the medium; typically, in this case, the medium serves as an anisotropically conductive medium in the direction of the columns, with slight in-plane conductivity imparted by the network aiding the dissipation of electrostatic charge.
Abstract:
A compressible thermally conductive member comprises a polymer field with thermally conducting magnetically aligned particles comprising a base portion and a multiplicity of protrusions extending from at least one surface of the base portion.
Abstract:
Electrical signals are produced by a pressure-responsive device, such signals being indicative of the position of locally applied pressure. The device comprises a position sensor assembly which comprises a composite layer medium including electrically conductive magnetic particles in a nonconductive matrix material. The particles are aligned into chains extending across the thickness of the layer, and chains include a non-conductive gap which is bridged upon application of sufficient pressure. The medium is sandwiched between sheet electrodes, and the resulting assembly may be transparent as is advantageous in writing pad and touch-sensitive screen applications. The pressure-responsive device is suitable, e.g., as an input device in graphics information systems, in combination with transmission and display facilities.
Abstract:
Disclosed are magnetically soft ferritic multiphase Fe-Cr-Ni alloys containing at least about 82 weight percent Fe, between about 3 and about 10 weight percent Cr, and between about 2 and about 8 weight percent Ni, a method for producing such alloys, and devices comprising such an alloy body. The method comprises a low-temperature anneal in the (.alpha.+.gamma.) region of the Fe-Cr-Ni phase diagram. Inventive alloys typically have a coercive force H.sub.c no more than about 3.0 Oe, preferably no more than about 2.0 Oe, a maximum permeability .mu..sub.m of at least about 1500 G/Oe, preferably at least about 2500 G/Oe, and contain at least about 5 volume percent non-.alpha.-phase material, typically .alpha.'- and .gamma.-phase material. Inventive alloys typically also have yield strength to 0.2% offset of at least about 26.10.sup.7 Pa (40.10.sup.3 psi), elongation to fracture of at least about 15%, good formability and rust resistance. Alloys according to the invention can advantageously be used in devices comprising a magnetically soft body, for instance, in electro-acoustic transducers, e.g., in telephone receivers, recording heads, pole pieces, and armatures.