Abstract:
Systems and methods for positioning a component on a surface or substrate including the steps of applying a coating to a selected deposit area of the surface, each deposit area defining at least a portion of a perimeter of an alignment area, depositing an fluid on the coating, and depositing, dropping, or otherwise positioning the component above the alignment area are disclosed.
Abstract:
An electronic device may be provided with a display mounted in a housing. The display may have an array of display pixels that provide image light to a user. The array of display pixels may form an active display structure with a rectangular shape. The rectangular active display structure may be surrounded by an inactive border region. Optical structures such as a sheet of glass or another optical member may have portions that are configured to bend light from the display pixels along the periphery of the active display structure. The optical member may have an area that is larger than the area of the active display structure, so that the presence of the optical member may serve to enlarge the apparent size of the display. Solidified liquid polymer may be used to support the optical structures and may be interposed between the optical structures and the active display structures.
Abstract:
A display may have an array of display pixels that generate an image. A coherent fiber bundle may be mounted on the display pixels. The coherent fiber bundle may have a first surface that is adjacent to the display pixels and a second surface that is visible to a viewer. The coherent fiber bundle may contain fibers that carry light from the first surface to the second surface. The second surface may be planar or may have a central planar region and curved edge regions that run along opposing sides of the central planar region. The fibers may have cross-sectional surface areas with a first aspect ratio on the first surface and a second aspect ratio that is greater than the first aspect ratio on the second surface.
Abstract:
A removable component for use with an earphone is disclosed. As an example, the removable component can be an ear tip. According to one aspect, an improved ear tip can be provided for use with a headphone. The ear tip is suitable for in-ear operation and can have a cosmetic deformable outer member. The deformable outer member can enable the ear tip to readily conform to a user's ear. The ear tip can also include an inner member to structurally support the outer member and to facilitate attachment to a headphone. Methods for forming such ear tips are also disclosed.
Abstract:
Described herein are methods of constructing a part having improved properties using metallic glass alloys, layer by layer. In accordance with certain aspects, a layer of metallic glass-forming powder is deposited to selected positions and then fused to a surface layer (i.e. layer below) by suitable methods such as laser heating or electron beam heating. The deposition and fusing are then repeated as need to construct the part, layer by layer. In certain embodiments, one or more sections or layers of non-metallic glass-forming material can be included as needed to form a composite final part. In certain aspects, the metallic glass-forming powder may be crystalized during depositing and fusing, or may be recrystallized during subsequent processing to provide selectively crystalized sections or layers, e.g., to impart desired functionality. In other aspects, non-metallic glass-forming materials may be deposited and fused at selected positions, e.g., to provide selective shear banding to impart improved ductile properties and plasticity. In yet other aspects, the metallic glass-forming powder or metallic glass material and non-metallic glass-forming material are deposited and fused to form a foam-like, bellow or similar structure, which is able to crumple under high stress to absorb energy under impact.
Abstract:
Described herein are methods of constructing a three-dimensional part using metallic glass alloys, layer by layer, as well as metallic glass-forming materials designed for use therewith. In certain embodiments, a layer of metallic glass-forming powder or a sheet of metallic glass material is deposited to selected positions and then fused to a layer below by suitable methods such as laser heating or electron beam heating. The deposition and fusing are then repeated as need to construct the part, layer by layer. One or more sections or layers of non-metallic glass material can be included as needed to form composite parts. In one embodiment, the metallic glass-forming powder is a homogenous atomized powder. In another embodiment, the metallic glass-forming powder is formed by melting a metallic glass alloy to an over-heat threshold temperature substantially above the Tliquidus of the alloy, and quenching the melt at a high cooling rate such that the cooling material is kept substantially amorphous during cooling to form the metallic glass. In various embodiments, the melt is atomized during cooling to form the metallic glass-forming powder.
Abstract:
Apparatus, systems and methods for increasing the strength of glass are disclosed. The strengthening of one portion of the glass article can be performed to a greater degree than another portion. Additionally, to mitigate against any distortion, such as warpage, physical manipulation of the glass article can be performed prior to or during strengthening, namely chemical strengthening. For example, in accordance with one embodiment, an outer surface of a glass article (e.g., cover glass) can be chemically strengthened to a greater degree than an inner surface of the glass article, yet the asymmetric strengthening does not induce distortion of the glass article because the glass article was physically manipulated, such as being bent, to counter any such distortion. Accordingly, glass articles that have undergone chemical strengthening processing are able to be not only thin and undistorted but also sufficiently strong and resistant to damage. The strengthened glass articles are well suited for use in consumer products, such as consumer electronic devices (e.g., portable electronic devices).
Abstract:
Various embodiments provide systems and methods for casting amorphous alloys. Exemplary casting system may include an insertable and rotatable vessel configured in a non-movable induction heating structure for melting amorphous alloys to form molten materials in the vessel. While the molten materials remain heated, the vessel may be rotated to pour the molten materials into a casting device for casting them into articles.
Abstract:
An electronic device having a unitary housing is disclosed. The device can include a first housing component having an open cavity, an internal electronic part disposed within the cavity, a second housing component disposed across the cavity, and a support feature disposed within the cavity and arranged to support the second housing component. The first housing component can be formed from metal, while the second housing component can be formed from a plurality of laminated foil metal layers. The second housing component can be attached to the first housing component via one or more ultrasonic welds, such that a fully enclosed housing is created. The fully enclosed housing can be hermetically sealed, and the outside surfaces thereof can be machined or otherwise finished after the ultrasonic welding.
Abstract:
Provided in one embodiment is a method, comprising: providing a first part comprising a protruding portion, wherein the protruding portion comprises an alloy that is at least partially amorphous; providing a second part comprising an opening; disposing the second part in proximity of the first part such that the protruding portion traversed through the opening; and mating the protruding portion and the opening at a first temperature to shape the protruding portion into an interlock joining the first part and the second part.