Abstract:
A wireless communication device is configured to perform resource allocation of device-to-device (D2D) communication in a UE. Synchronization establishing circuitry is provided to acquire radio resource synchronization and to establish a time-frequency resource grid having resource units allocation to a D2D communication. Signal metric evaluation circuitry is provided to evaluate resource unit(s) of a received signal using a signal metric when the time-frequency resource grid has been established. Radio resource selection circuitry is provided to select a time resource of the time-frequency resource grid for allocation to a D2D communication depending upon a result of the resource unit evaluation. Other embodiments may be described and claimed.
Abstract:
Embodiments of an enhanced node B (eNB), user equipment (UE) and methods of signaling for proximity services and device-to-device (D2D) discovery in an LTE network are generally described herein. In some embodiments, the eNB may support inter-cell device-to-device (D2D) discovery by transmitting signaling, to a first user equipment (UE), to indicate configuration information for a D2D discovery resource pool including D2D resources configured by one or more neighboring cells. The configuration information includes timing offsets between a serving cell of the first UE and the one or more neighboring cells. Other apparatuses and methods are also described
Abstract:
Embodiments described herein relate generally to a device that is to transmit signals using a control channel. The device may be, for example, a user equipment or low-powered radio access node. Before transmitting the signal, the transmitting device may modify symbols associated with the signal. For example, the transmitting device may generate a scrambling sequence and modulate the symbols associated with the signal with the scrambling sequence. In another example, the transmitting device may apply a shifting pattern or hopping pattern to the sequence indices associated with sequences for symbols to be included in the signal. The applied pattern may change one or more sequence indices associated with one or more symbol indices associated with the signal. Other embodiments may be described and claimed.
Abstract:
Novel adaptive silencing schemes for device-to-device (D2D) discovery based on loading conditions in a discovery zone are disclosed herein. These adaptive silencing schemes can be used to mitigate interference and data collisions in networks where D2D connections can be formed. In some embodiments, a silencing factor is used to probabilistically determine whether a user equipment (UE) will transmit one or more D2D discovery signals in the discovery zone. Loading conditions in a current discovery zone can be estimated using several different approaches and metrics described herein. The silencing factor can be increased or decreased for a subsequent discovery zone based on the values of one or more of the metrics described herein for the current discovery zone.