摘要:
The present invention relates to methods and apparatuses for performing driving assistance for a controlled vehicle, involving determining a longitudinal acceleration target value on the basis of a lateral acceleration of the controlled vehicle and one or more setting parameters, and controlling a longitudinal acceleration of the controlled vehicle on the basis of the calculated longitudinal acceleration target value. According to the invention, a lateral acceleration acting, during cornering, on a proceeding vehicle, which moves in the longitudinal direction on the road ahead of the controlled vehicle, is estimated, and the one or more setting parameters for the calculation of the longitudinal acceleration target value are set based on the estimated lateral acceleration acting on the proceeding vehicle during cornering.
摘要:
The present invention relates to methods and apparatuses for performing driving assistance for a controlled vehicle, involving determining a longitudinal acceleration target value on the basis of a lateral acceleration of the controlled vehicle and one or more setting parameters, and controlling a longitudinal acceleration of the controlled vehicle on the basis of the calculated longitudinal acceleration target value. According to the invention, a lateral acceleration acting, during cornering, on a proceeding vehicle, which moves in the longitudinal direction on the road ahead of the controlled vehicle, is estimated, and the one or more setting parameters for the calculation of the longitudinal acceleration target value are set based on the estimated lateral acceleration acting on the proceeding vehicle during cornering.
摘要:
A vehicle collision monitoring method comprises preparing a host vehicle message including information pertaining to a host vehicle including a host vehicle location and a host vehicle heading, receiving a remote vehicle message including information pertaining to a remote vehicle including a remote vehicle location and a remote vehicle heading, and evaluating, using a controller, whether the host vehicle heading and the remote vehicle heading are converging paths. The evaluating includes segregating an area surrounding the host vehicle location into a plurality of sectors, determining which of the sectors is a remote vehicle sector including the remote vehicle location, and determining whether the host vehicle heading and the remote vehicle heading are converging paths based on the host vehicle location, the host vehicle heading, the remote vehicle location, the remote vehicle heading and a characteristic relating to the sector that includes the remote vehicle location.
摘要:
A method is provided for controlling a driving distance between a host vehicle and a first vehicle driving in front of the host vehicle, the host vehicle driving at a driving speed and at the driving distance to the first vehicle. The host vehicle includes a system for controlling the driving distance and a fuel saving system, wherein the system for controlling the driving distance is adapted to retain the driving distance at not less than a preset minimum safety distance, and wherein the fuel saving system includes an automatic speed increasing function which in case of fulfillment of a set of conditions automatically increases the driving speed in order to utilise kinetic energy inherent in the host vehicle to save fuel. The method includes retrieving information that the set of conditions is fulfilled such that the activation of the automatic speed increasing function is enabled, generating an altered safety distance by altering the preset safety distance by an offset distance, and if the driving distance is less than the altered safety distance, adapting the driving speed until the altered safety distance is reached, whereafter activation of the automatic speed increasing function is allowable, and, upon the activation, resetting the preset minimum safety distance such that the offset distance is available during the activity of the speed increasing function.
摘要:
An apparatus and a method determines a short-term driving tendency. The apparatus may include a driving information collecting unit configured to collect driving information for determining the short-term driving tendency, a short-term driving tendency calculating module configured to receive input variables for determining the short-term driving tendency and calculate a short-term driving tendency index using a fuzzy control theory, and a calculation prohibition control module configured to check an accelerator position sensor (APS) signal of the vehicle and prohibit calculation of the short-term driving tendency index when an APS opening degree is equal to or less than a predetermined reference value.
摘要:
Methods and systems for performing vehicle driver assistance. One method includes determining, at a controller, whether the vehicle is steering toward a drive-straight state and when the vehicle is steering toward the drive-straight state, calculating, at the controller, a predicted course trajectory using a third order polynomial. The method also includes calculating, at the controller, the predicted course trajectory using a non-third-order function when the vehicle is not steering toward the drive-straight state. In addition, the method includes performing the driver assistance based on the predicted course trajectory.
摘要:
Methods and systems for predictive reasoning for controlling speed of a vehicle are described. A computing device may be configured to identify a first and second vehicle travelling ahead of an autonomous vehicle and in a same lane as the autonomous vehicle. The computing device may also be configured to determine a first buffer distance behind the first vehicle at which the autonomous vehicle will substantially reach a speed of the first vehicle and a second buffer distance behind the second vehicle at which the first vehicle will substantially reach a speed of the second vehicle. The computing device may further be configured to determine a distance at which to adjust a speed of the autonomous vehicle based on the first and second buffer distances and the speed of the autonomous vehicle, and then provide instructions to adjust the speed of the autonomous vehicle based on the distance.
摘要:
Aspects of the present disclosure relate switching between autonomous and manual driving modes. In order to do so, the vehicle's computer may conduct a series of environmental, system, and driver checks to identify certain conditions. The computer may correct some of these conditions and also provide a driver with a checklist of tasks for completion. Once the tasks have been completed and the conditions are changed, the computer may allow the driver to switch from the manual to the autonomous driving mode. The computer may also make a determination, under certain conditions, that it would be detrimental to the driver's safety or comfort to make a switch from the autonomous driving mode to the manual driving mode.
摘要:
Provided are collision avoidance apparatus and method for a vehicle, which are capable of maintaining a braking force and assisting a steering force by providing a braking control signal and a steering control signal to a wheel of a driver's steering intention direction during braking for collision avoidance, thereby achieving lateral avoidance. The collision avoidance apparatus for the vehicle includes: a measurement unit configured to measure a motion of an opposite vehicle; and an electronic control unit configured to determine whether there is a risk of collision with the opposite vehicle, based on a measurement result from the measurement unit, and, when it is determined that there is the risk of collision, provide a braking control signal and a steering control signal to an actuator for controlling a wheel of a driver's steering intention direction and provide a braking release signal for releasing a braking force from a wheel opposite to the driver's steering intention direction.
摘要:
An autonomous vehicle detects a tailgating vehicle and uses various response mechanisms. For example, a vehicle is identified as a tailgater based on whether its characteristics meet a variable threshold. When the autonomous vehicle is traveling at slower speeds, the threshold is defined in distance. When the autonomous vehicle is traveling at faster speeds, the threshold is defined in time. The autonomous vehicle may respond to the tailgater by modifying its driving behavior. In one example, the autonomous vehicle adjusts a headway buffer (defined in time) from another vehicle in front of the autonomous vehicle. For example, if the tailgater is T seconds too close to the autonomous vehicle, the autonomous vehicle increases the headway buffer to the vehicle in front of it by some amount relative to T.