Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus determines a first link quality. The first link quality indicates a link quality of a first link between a first potential relay UE and the remote UE. The apparatus determines a second link quality. The second link quality indicates a link quality of a second link between the first potential relay UE and a first base station. The apparatus ranks the first potential relay UE relative to a second potential relay UE. The ranking of the first potential relay UE is based on a combination of the first link quality and the second link quality. The apparatus selects one of the first potential relay UE and the second potential relay UE for a relay connection based on the ranking of the first potential relay UE relative to the second potential relay UE.
Abstract:
An efficient approach for a mobile device apparatus that is out of network coverage to communicate with the network is desired. The apparatus may be a user equipment (UE). The apparatus receives one or more device-to-device (D2D) signals respectively from one or more proximate UEs. The apparatus measures signal strength of the one or more D2D signals based on signal strength of one or more resource elements used for receiving one and/or more reference signals of the one or more D2D signals or signal strength of one or more resource elements used for receiving one or more data parts of the one or more D2D signals. The apparatus selects one of the one or more proximate UEs as a relay UE based on the measurement of the signal strength of the one or more D2D signals, to communicate with the base station via the selected relay UE.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a wireless communication user equipment (UE). The apparatus transmits information in a device-to-device (D2D) communication to a second UE, the information indicating whether the second UE should use a direct feedback path to the UE or an indirect feedback path to the UE. The apparatus receives feedback through one of the direct feedback path or the indirect feedback path based on the information indicated in the D2D communication. The apparatus receives a D2D communication from a second UE. The apparatus determines whether to transmit feedback in response to the D2D communication via a direct feedback path to the second UE or via an indirect feedback path to the second UE. The apparatus transmits the feedback in response to the D2D communication in the determined feedback path.
Abstract:
In an aspect, a method, an apparatus, and a computer program product for wireless communication are provided. The apparatus codes a peer discovery message for peer discovery. The apparatus generates a plurality of different redundancy versions of the coded peer discovery message. The apparatus transmits each of the different redundancy versions of the coded peer discovery message in a different allocated time period. In another aspect, a method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives at least one redundancy version of a coded peer discovery message. The apparatus attempts to decode the received at least one redundancy version of the coded peer discovery message.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. In one configuration, the apparatus sends a transmission requesting a peer discovery signal and indicating whether the transmission includes a unicast request or a multicast request. In addition, the apparatus receives at least one peer discovery signal response based on the transmission. In another configuration, the apparatus receives a transmission requesting a peer discovery signal and indicating whether the transmission includes a unicast request or a multicast request. In addition, the apparatus sends a peer discovery signal response in response to the received transmission and on resources determined based on the indication whether the transmission includes a unicast request or a multicast request.
Abstract:
Apparatus, methods, and computer-readable media for facilitating a SL communication for mode 2 resource allocation are disclosed herein. An example method includes configuring an inter-UE coordination message associated with sidelink communication with a second UE, the inter-UE coordination message indicating one or more resources for the sidelink communication. The example method further includes transmitting, to the second UE, the inter-UE coordination message via a MAC-CE, the MAC-CE being associated with a PSSCH. The example method further includes transmitting, to the second UE, or receiving, from the second UE, the sidelink communication via a first resource of the one or more resources.
Abstract:
Techniques for sidelink positioning with collinear anchors are disclosed. The techniques can include selecting a set of anchor user equipments (UEs) for a sidelink positioning of a target UE, determining that the set of anchor UEs is collinear, and responsive to the determination that the set of anchor UEs is collinear, initiating a collinear anchor positioning procedure including determining an estimated location of the target UE based on positioning measurements associated with the set of anchor UEs, generating a location report including the estimated location of the target UE, wherein the location report includes an indication that the estimated location is based on collinear anchor positioning measurements, and providing the location report to a location requesting entity.
Abstract:
Methods, systems, and devices for wireless communication are described. One method for wireless communication at a first device includes receiving a multicast packet from a second device, decoding control header information in the received multicast packet, determining that a decoding procedure associated with a payload of the received multicast packet is unsuccessful and transmitting a negative acknowledgement (NACK) based at least in part on the determining. The method also includes retrieving a list of transmitter identifiers. In some cases, transmitting the NACK is based at least in part on the list of transmitter identifiers. The method further includes determining a transmitter identifier associated with the multicast packet and determining that the transmitter identifier is present in the list of transmitter identifiers.
Abstract:
Method and apparatus for context specific alerts for autonomous and non-autonomous vehicles. The apparatus obtains a capability indication of a UE, the capability indication indicating that the UE is paired with a vehicle. The apparatus generates vehicle specific signals based on the capability indication indicating that the UE is paired with the vehicle. The apparatus outputs the vehicle specific signals to the UE. The vehicle comprising an autonomous vehicle, where the capability indication further indicates that an autonomous mode of the autonomous vehicle is engaged or disengaged. Data within the vehicle specific signals is tailored to a paired combination of the UE and the vehicle.
Abstract:
Apparatus, methods, and computer-readable media for facilitating a cloud-based vehicle XR user experience are disclosed herein. An example method for wireless communication at a user equipment (UE) includes transmitting a request for a vehicle extended reality (XR) session. The vehicle XR session may be based on a first user XR stream including a vehicle XR component associated with a vehicle and a first user XR component associated with a first user. The first user may have an association with the vehicle. The example method also includes transmitting uplink information associated with the first user XR stream. The example method also includes receiving rendering information associated with the first user XR stream. The rendering information may be based on the uplink information.