摘要:
A new process for insulating the void in a thermal distance piece in a low-temperature or cryogenic storage tank uses a vacuum source to draw insulation into the TDP. Two remotely spaced openings to the void are provided. A strainer is temporarily mounted in one of the openings. The other opening is connected to a suction wand. The wand has an inner cylinder that extends through an outer cylinder and projects outwardly from a proximal end of the outer cylinder. Distal air vents are provided on the inner cylinder, near a distal cap that connects distal ends of the cylinders. Proximal air vents are provided on a proximal cap that connects a portion of the inner cylinder to a proximal end of the outer cylinder. The distal end of the wand is inserted into a container of insulation. When a vacuum is drawn through the opening with the strainer, the insulation is drawn through the wand and into the void.
摘要:
The present invention relates to use of a composite material as a fluid barrier under cryogenic conditions, the composite material having: (a) a tensile Young's modulus of less than 50 GPa; and (b) a tensile strain at break of at least 5% at ambient conditions. The present invention further relates to a sandwich and a containment system for a cryogenic fluid comprising the composite material.
摘要:
A sealed wall structure includes at least one sealed plate (10), the plate (10) being corrugated with at least one first series of corrugations and a second series of corrugations (6) of transverse directions, the corrugations protruding toward the internal face of a tank. The structure includes at least one reinforcing ridge (11) made on at least one corrugation of a series in its portion lying between two successive intersections (8) with corrugations of the other series, each ridge (11) being generally convex and made locally on at least one lateral face (6b) of the corrugation that supports it.
摘要:
This disclosure discusses providing safer and more accessible insulating cold boxes for cryogenic equipment. A cold box of the current invention includes a housing partially extending out of the cold box jacket wherein equipment that may need to be accessed can be located. The housing includes a breakaway barrier between the main cold box and the external housing to allow overpressures to be relieved into the cold box. Cold boxes may contain cryogenic columns, sections of cryogenic columns, distillation columns, mixing columns, storage vessels, pressure vessels, heat exchangers, and combinations thereof. The housing may contain auxiliary elements such as rotating equipment, pumps, turboexpanders, instrument devices, valves, and piping. Placing auxiliary elements in a housing outside the main cold box allows for safer access to cryogenic equipment.
摘要:
Panel (1) comprising, in succession, a first rigid board forming the back of the panel, a first thermally insulating layer (3) borne by the said backboard, an impervious covering (4) covering the said first thermally insulating layer, a second thermally insulating layer (5) which partially covers the said impervious covering and a second rigid board (6) covering the said second thermally insulating layer, characterized in that it comprises a film (8) which covers at least part of the said impervious covering which is not covered by the said second thermally insulating layer, the said film comprising at least one protective portion (9) and at least one spew portion (11) adjacent to the said protective portion, the said protective portion and the said spew portion being able to be detached from the said impervious covering independently of one another.
摘要:
A cryogenic fuel tank assembly 10 is provided comprising a cryogenic fuel tank wall 22. A foam assembly 24 is affixed to the cryogenic fuel tank wall 22, the foam assembly 24 having an inner surface 30 and an outer surface 32. A first solid film 40 bonded to the outer surface 32 to provide a uniform outer bonding surface 42. A thermal protection system assembly 38 is bonded to the uniform outer bonding surface 42.
摘要:
Disclosed is a liquid container adapted to store liquefied natural gas (LNG). The LNG storage container include a sealing wall directly contacting liquid contained in the tank and a structural wall, which is an exterior wall or inner structure integrated with the exterior wall. The container further includes a plurality of connectors mechanically connecting the sealing wall and the structural wall and an intermediate wall structure positioned between the structural wall and the interior wall. The intermediate wall structure is configured to move relative to at least one of the interior wall and the structural wall.
摘要:
Disclosed is a liquid container adapted to store liquefied natural gas (LNG). The LNG storage container include a sealing wall directly contacting liquid contained in the tank and a structural wall, which is an exterior wall or inner structure integrated with the exterior wall. The container further includes a plurality of connectors mechanically connecting the sealing wall and the structural wall and an intermediate wall structure positioned between the structural wall and the interior wall. The intermediate wall structure is configured to move relative to at least one of the interior wall and the structural wall
摘要:
A new insulation system is provided that contains microspheres. This insulation system can be used to provide insulated panels and clamshells, and to insulate annular spaces around objects used to transfer, store, or transport cryogens and other temperature-sensitive materials. This insulation system provides better performance with reduced maintenance than current insulation systems.
摘要:
A new insulation system is provided using microspheres. This insulation system can be used to provide insulated panels, clamshells, and insulate annular spaces around objects. This insulation system provides better performance than current insulation systems.