Abstract:
Cryogenic fuels tanks for use in aircraft structures are disclosed herein. An example apparatus disclosed herein an airfoil-shaped structure disposed outboard of a fuselage of an aircraft. The example apparatus also includes a first cryogenic fuel tank disposed inside the airfoil-shaped structure.
Abstract:
A tank system for the cryogenic storage of hydrogen includes a tank structure with at least one hollow body for accommodating liquid hydrogen and at least one insulating means, which encloses the tank structure, for insulating the at least one hollow body. The tank structure has an exterior shape that is integrateable in a load-bearing primary structure of an aircraft. The tank structure is load bearing and is designed to at least partially absorb a load introduced into the primary structure. This makes it possible to achieve a particularly efficient design of an aircraft in which the fuselage of the aircraft is not divided into two parts by the hydrogen tank integrated therein, can be arranged near the center of gravity, and essentially does not increase the additional weight of the aircraft.
Abstract:
A thermal management and power generation system for a hypersonic vehicle. The thermal management and power generation system comprising a fluid supply having a volatile fluid and a fuel supply having an endothermic fuel. A first heat exchanger, fluidically coupled to the fluid supply, absorbs heat from a first portion of the hypersonic vehicle, which vaporizes the volatile fluid. A mixing apparatus, fluidically coupled to the first heat exchanger and the fuel supply combines the vaporized volatile fuel and endothermic fuel. A second heat exchanger, fluidically coupled to the mixing apparatus, absorbs heat from a second portion of the hypersonic vehicle and decomposes the endothermic fuel by endothermic pyrolysis. A heat engine, fluidically coupled to the first heat exchanger and the mixing apparatus, is configured to generate an electrical power for use by the hypersonic vehicle. The vaporized volatile fluid mixed with the endothermic fuel within the second heat exchanger reduces coking caused by the endothermic pyrolytic decomposition of the endothermic fuel as compared to an endothermic pyrolytic decomposition of an endothermic fuel not having a vaporized volatile fluid mixed therewith.
Abstract:
An electric power management system of a vehicle may interconnect a power plant, a propeller drive unit, and a battery via a bus. A command limiting controller may direct the operation of the power plant and the propeller drive unit in fast and slow modes of operation, the fast mode of operation operating at a higher bus voltage than at a slow mode of operation. The command limiting controller may generate a bus current to drive the propeller drive unit according to a command limiting, voltage-versus-current curve that adjusts the bus current depending on an amount of voltage on the power bus; where the command limiting curve includes a minimum voltage portion, a maximum voltage portion and a control range therebetween having upper and lower voltage limits and upper and lower current limits for enhanced reliability and stable control of the propeller drive unit.
Abstract:
The invention concerns an ultra-rapid air vehicle together with a method of aerial locomotion by means of an ultra-rapid air vehicle, where the air vehicle is propelled by a system of motors formed of turbojets (TB1, TB2), ramjets (ST1, ST2) and a rocket motor which can be made streamlined to reduce the drag of the base during the cruise phase, and where the vehicle has a gothic delta wing (A) fitted with moving fins (a1, a2) at both outer ends of the trailing edge of the delta wing (A).
Abstract:
The present invention relates to a propulsion device for an aircraft. The propulsion device comprises a first energy converter (4), a second energy converter (5) and a propulsion unit (1). The first energy converter (4) provides first propulsion energy, and the second energy converter (5) provides second propulsion energy. The first energy converter (4) and the second energy converter (5) are adapted to provide the first propulsion energy and the second propulsion energy to the propulsion device (1).
Abstract:
The present invention relates to a propulsion system for a vehicle. The propulsion system has an airframe integrated hydrocarbon fueled airbreathing engine, such as a ramjet or a scramjet. The propulsion system further has at least one rocket positioned so as to use the aft body contour of the vehicle directly for flow expansion. In a preferred embodiment, a plurality of rockets are arrayed across the width of the engine nozzle.
Abstract:
A toroidal shaped or ring fuel tank located within the loft line of a blended wing body aircraft is disclosed. The ring tank may be used in an aircraft to store liquid hydrogen fuel with a reduced tank weight. The ring tank may be continuous with no tank end domes typically found on cylindrical pressure tanks, reducing tank weight for a given fuel volume. The ring tank configuration avoids increasing the aerodynamic shape of the aircraft and does not encroach on usable passenger or payload areas of the aircraft. In one example the ring tank may be configured in a nose down position such that the forward portion of the ring tank is outside the pressurized cabin area.
Abstract:
The present embodiments and associated methods provide for a progressive 3-axis multi-variable propulsion vectoring aerial and spaceborne vehicle. One embodiment of the vehicle is comprised of top and side air intakes, a curved sphenoid air accumulator, a compressor section, a diffuser, a plurality of fuel burner cans, a turbine section, a gas plenum, top, side, and bottom exhaust ports, propellant burner cans, gas plenum iris, an onboard flight control computer, and top, side, and bottom exhaust port doors. Combustion gasses are produced which are directed by the gas plenum to the exhaust ports which provide thrust and lift to the vehicle. By selectively opening and closing the exhaust port doors, the vehicle may be made to rise, hover, and accelerate in any direction. Such an embodiment provides a vehicle that can directly ascend through the atmosphere into space.