Abstract:
An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may adaptively adjust the display output based on ambient lighting conditions. For example, in cooler ambient lighting conditions such as those dominated by daylight, the display may display neutral colors using a relatively cool white. When the display is operated in warmer ambient lighting conditions such as those dominated by indoor light sources, the display may display neutral colors using a relatively warm white. Adapting to the ambient lighting conditions may ensure that the user does not perceive color shifts on the display as the user's vision chromatically adapts to different ambient lighting conditions. Adaptively adjusting images in this way can also have beneficial effects on the human circadian rhythm by displaying warmer colors in the evening.
Abstract:
A layer of liquid crystal material may be interposed between display layers. The display layers may include thin-film transistor circuitry having subpixel electrodes for applying electric fields to subpixel portions of the layer of liquid crystal material. Subpixels of different colors may have different shapes and may have different liquid crystal layer thicknesses. These subpixel differences may be configured to slow the switching speed of subpixels of a certain color relative to other subpixels to reduce color motion blur when an object is moved across a black or colored background. The subpixels may have chevron shapes. Subpixels of a first color may have chevron shapes that are less bent than subpixels of second and third colors. In configurations with varying liquid crystal layer thicknesses, the subpixels of the first color may have thicker liquid crystal layers than the subpixels of the second and third colors.
Abstract:
Systems and methods for reducing or eliminating image artifacts on a dual-layer liquid crystal display (LCD). By way of example, a system includes a first display panel and a second display panel. The system includes a processor coupled to the first display panel and the second display panel, and configured to generate a first image, and to generate a second image to be displayed on the first display panel based on the first image. The processor is configured to interpolate the second image. Interpolating the second image includes adjusting the second image according to a generated objective function bounded by a first constraint. The processor is configured to filter the second image, and to generate a third image to be displayed on the second display panel based on the first image and the second image. The third image is generated to prevent image artifacts on the second display panel.
Abstract:
A display may have an active area surrounded by an inactive border area. The inactive border area may be provided with an opaque masking material. The display may be a liquid crystal display having a liquid crystal layer sandwiched between a color filter layer and a thin-film transistor layer. Upper and lower polarizers may be provided above and below the color filter and thin-film transistor layers. The upper polarizer may have a polarized central region that overlaps the active area of the display. The upper polarizer may also have an unpolarized portion in the inactive border area overlapping the opaque masking material. The opaque masking material may alternatively be formed on the underside of a clear polymer substrate that is attached to the display above the upper polarizer or may be incorporated within the layers that make up the upper polarizer.
Abstract:
A display may have a color filter layer and a thin-film transistor layer. A liquid crystal layer may be located between the color filter layer and the thin-film transistor layer. The display may have an active area surrounded by an inactive area. The opaque border layer may contain first and second opaque layers in the inactive area. The first opaque layer may have an opening in the inactive area that is overlapped by an isolation layer. The second opaque layer may be located in the inactive area and may overlap the opening in the first opaque layer to block light in the inactive area. The isolation layer may be interposed between the first and second opaque layers and may prevent static charge from an electrostatic discharge event along the edge of the display from migrating to the active area through the opaque border in the inactive area.
Abstract:
A display is provided that has upper and lower polarizers, a color filter layer, a liquid crystal layer, and a thin-film transistor layer. The color filter layer and thin-film transistor layer may be formed from materials such as glass that are subject to stress-induced birefringence. To reduce light leakage that reduces display performance, one or more internal layers may be incorporated into the display to help ensure that linearly polarized backlight that passes through the display is not undesirably converted into elliptically polarized light. The internal layers may include a thin-film polarizer layer that forms a coating on the color filter layer, a thin-film polarizer layer that forms a coating on the thin-film-transistor layer, a retarder layer that is formed as a coating on the color filter layer, and a retarder layer that is formed as a coating on the thin-film-transistor layer.
Abstract:
An electronic device may have a liquid crystal display having a backlight and color mixing prevention structures. The color mixing prevention structures may, in part, be formed from one or more arrays of color filter elements. The liquid crystal display may include first and second transparent substrate layers on opposing sides of a liquid crystal layer. The display may include a first array of color filter elements on the first transparent substrate layer and a second array of color filter elements on the second transparent substrate layer. One or more of the arrays of color filter elements may include a black matrix formed over portions of the color filter elements. The color filter elements may fill or partially fill openings in the black matrix. The display may include a collimating layer on the second transparent substrate layer. The color filter elements may include cholesteric color filter elements.
Abstract:
Electronic devices may be provided with displays that have polarizers. A polarizer may be provided with an unpolarized strip. The unpolarized strip may extend across the width of the polarizer and may overlap a light-based component such as a camera that is located in an inactive border area of a display. The polarizer may have a polarizer layer formed form a polymer with a dichroic dye. A strip-shaped opening may be formed in the polarizer layer by cutting out a strip of the polarizer layer with a laser cutting tool or other equipment, a strip of unpolarized material may be formed in the polarizer layer using chemical bleaching, or light-based bleaching techniques may be used to form an unpolarized strip in the polarizer layer.
Abstract:
An electronic device is provided with a display such as a liquid crystal display. The display includes a liquid crystal display module an array of display pixels. A backlight unit is used to provide backlight illumination to the display module. A shutter module having local dimming elements is used to locally control the amount of light that is transmitted through the display. The local dimming elements can be formed from liquid crystal display structures, polymer-dispersed liquid crystal display structures, photovoltaic material, electrowetting display structures, and/or other suitable light controlling elements. Each local dimming element controls the amount of light that is transmitted through an overlapping region of the array of display pixels. The local dimming elements may be arranged in a uniform array having rows and columns or may be shaped and sized differently and located in specific regions of the display.
Abstract:
One embodiment may take the form of a UV mask for use while curing sealant on LCD displays. The UV mask includes a mother glass and a UV mask layer on the mother glass. A UV absorption film is located adjacent the UV mask layer and an anti-reflection (AR) film is located adjacent the UV absorption film.