Abstract:
A spray aperture disk designed for insertion into a column liner of an electron microscope having a substantially circular shape, a plurality of tabs or extensions located on the circumferential periphery of the disk and a small central aperture. The disk is inserted into the tapered end of a column liner and then deformed by a tool which pushes the disk into position within the column liner. The disk may be removed by inserting a rod of appropriate length and width into the column liner and pushing the disks out. The disks are self centering and require no separate carrier. The disks are made from inexpensive materials and are disposable.
Abstract:
This ion beam system provides an ion beam pattern which is produced without the need for a mask. A programmable grid is used in combination with an ion beam source, where the apertures of the programmable grid can have electrical potentials associated therewith which either extract ions or impede the movement of ions through the apertures. Depending upon the electrical biasing provided to each of the apertures of the grid, different patterns of ions can be extracted through the grid. By changing the electrical bias at different locations on the programmable grid, these different patterns are produced. The patterns can be used for many applications, including patterned deposition, patterned etching, and patterned treatment of surfaces.
Abstract:
An electron beam blanker for use in electron beam lithography systems is disclosed which is capable of providing exposure rates on the order of 300MHz at beam currents of approximately 600nA. A condensing lens and a stigmator are provided to bring the electron beam to a small image in a plane perpendicular to the beam direction. An etched silicon knife-edge, coated with gold, is located in this image plane in close proximity to the beam, to provide a sharp cut-off as the beam is swept past its edge. In accordance with aspects of the invention, a deflector plate structure provides an electromagnetic field whose geometry ensures that the velocity of a beam electron, as it exits the field, is substantially directly proportional to the undeflected beam electron's position vector relative to the beam cross-over in the image plane of the condenser lens. Since the image plane of the condensing lens becomes the object plane for a final lens which forms the spot on a point on the resist, the above geometry substantially eliminates spot motion during the blanker rise time.
Abstract:
A microwave plasma ion source according to this invention is characterized by the construction of the extracting electrode in contact with the discharge chamber. The electrode is divided into a part substantially exposed to a plasma and a remaining part which is not exposed to the plasma. Moreover, both these parts are held in a state in which they are electrically connected with each other.As a result, very little P or As deposits on the surface of the electrode, and a stable high-current ion beam can be supplied over a long period of time.
Abstract:
Electron beam lens 22 can be operated in a first mode to demagnify and focus the image of electron source 14 at image plane 32. Electron optical lens 34 and 46 further demagnify the image plate 32 through the focal point 60 on the face of target 58 to provide a scannable exposure spot. Electron optical lens 22 can be operated in the second mode which floods aperture 32 so that the image of the aperture is demagnified and focused on target 58 to provide a large exposure area.
Abstract:
A shielded magnetic lens and deflection yoke structure for an electron beam column which minimizes aberrations in the lens system caused by winding asymmetry in the field coil, as well as aberrations due to eddy currents created within the magnetic circuit of the lens by interaction with the field of the deflection yoke. The shield includes a polepiece structure for the magnetic electron lens generally comprising a hollow cylinder formed of a plurality of precisely machined magnetic discs stacked concentrically with precisely machined nonmagnetic discs in alternating sequence with the lens coil positioned adjacent the periphery of the cylinder and the deflection yoke positioned within the cylinder or proximate to either end thereof. In one preferred embodiment of the invention the magnetic discs are formed of a nonconductive material such as ferrite and the nonmagnetic discs are formed of alumina.
Abstract:
In an electron microscope dark-field illumination is obtained by including an annular diaphragm between the electron source and the second condenser lens and by varying the energisation of the condenser lenses whilst retaining imaging of the electron source on the specimen. The specimen is illuminated by a beam in the form of a hollow cone of varying apical angle. By means of a known objective diaphragm those electrons are selected from the scattered beam for the purpose of image formation which leave the specimen within a narrow cone about the optical axis, irrespective of the angle of incidence.
Abstract:
An electron-beam tube for a scanning electron microscope employs the use of a TF built-up field emission cathode which can be operated from preferably the 100 plane in a substantially continuous mode to provide a stable electron beam having high current density, high resolution, and very high electron optical brightness from a source of very small proportions. The tube, which comprises an evacuated envelope having chambers of different vacuums, is designed to facilitate either quick-change cathode replacement or attendance to the specimen with minimum loss of operating time since the vacuum of the entire tube need not be released. Also, the chamber containing the field emission cathode can be separable from the tube to allow replacement by a new preprocessed cathode in a pre-evacuated chamber. In this case, the mounting means includes a device for puncturing a seal in the cathode chamber to allow the electron beam to pass therethrough.