Abstract:
A device for obtaining, storing and displaying information from a remote server, the device has a modem for establishing communication sessions with the remote server. A memory coupled to the modem stores the obtained information, and a display is coupled to the memory for displaying the stored information. The device automatically and periodically communicates with the remote server for obtaining the information.
Abstract:
Method, modules and a system formed by connecting the modules for controlling payloads are disclosed. An activation signal is propagated in the system from a module to the modules connected to it. Upon receiving an activation signal, the module (after a pre-set or random delay) activates a payload associated with it, and transmits the activation signal (after another pre-set or random delay) to one or more modules connected to it. The system is initiated by a master module including a user activated switch producing the activation signal. The activation signal can be propagated in the system in one direction from the master to the last module, or carried bi-directionally allowing two way propagation, using a module which revert the direction of the activation signal propagation direction. A module may be individually powered by an internal power source such as a battery, or connected to external power source such as AC power. The system may use remote powering wherein few or all of the modules are powered from the same power source connected to the system in a single point. The power may be carried over dedicated wires or concurrently with the conductors carrying the activation signal. The payload may be a visual or an audible signaling device, and can be integrated within a module or external to it. The payload may be powered by a module or using a dedicated power source, and can involve randomness associated with its activation such as the delay, payload control or payload activation.
Abstract:
Method, modules and a system formed by connecting the modules for controlling payloads are disclosed. An activation signal is propagated in the system from a module to the modules connected to it. Upon receiving an activation signal, the module (after a pre-set or random delay) activates a payload associated with it, and transmits the activation signal (after another pre-set or random delay) to one or more modules connected to it. The system is initiated by a master module including a user activated switch producing the activation signal. The activation signal can be propagated in the system in one direction from the master to the last module, or carried bi-directionally allowing two way propagation, using a module which revert the direction of the activation signal propagation direction. A module may be individually powered by an internal power source such as a battery, or connected to external power source such as AC power. The system may use remote powering wherein few or all of the modules are powered from the same power source connected to the system in a single point. The power may be carried over dedicated wires or concurrently with the conductors carrying the activation signal. The payload may be a visual or an audible signaling device, and can be integrated within a module or external to it. The payload may be powered by a module or using a dedicated power source, and can involve randomness associated with its activation such as the delay, payload control or payload activation.
Abstract:
Method, modules and a system formed by connecting the modules for controlling payloads are disclosed. An activation signal is propagated in the system from a module to the modules connected to it. Upon receiving an activation signal, the module (after a pre-set or random delay) activates a payload associated with it, and transmits the activation signal (after another pre-set or random delay) to one or more modules connected to it. The system is initiated by a master module including a user activated switch producing the activation signal. The activation signal can be propagated in the system in one direction from the master to the last module, or carried bi-directionally allowing two way propagation, using a module which revert the direction of the activation signal propagation direction. A module may be individually powered by an internal power source such as a battery, or connected to external power source such as AC power. The system may use remote powering wherein few or all of the modules are powered from the same power source connected to the system in a single point. The power may be carried over dedicated wires or concurrently with the conductors carrying the activation signal. The payload may be a visual or an audible signaling device, and can be integrated within a module or external to it. The payload may be powered by a module or using a dedicated power source, and can involve randomness associated with its activation such as the delay, payload control or payload activation.
Abstract:
Method, modules and a system formed by connecting the modules for controlling payloads are disclosed. An activation signal is propagated in the system from a module to the modules connected to it. Upon receiving an activation signal, the module (after a pre-set or random delay) activates a payload associated with it, and transmits the activation signal (after another pre-set or random delay) to one or more modules connected to it. The system is initiated by a master module including a user activated switch producing the activation signal. The activation signal can be propagated in the system in one direction from the master to the last module, or carried bi-directionally allowing two way propagation, using a module which revert the direction of the activation signal propagation direction. A module may be individually powered by an internal power source such as a battery, or connected to external power source such as AC power. The system may use remote powering wherein few or all of the modules are powered from the same power source connected to the system in a single point. The power may be carried over dedicated wires or concurrently with the conductors carrying the activation signal. The payload may be a visual or an audible signaling device, and can be integrated within a module or external to it. The payload may be powered by a module or using a dedicated power source, and can involve randomness associated with its activation such as the delay, payload control or payload activation.
Abstract:
Method, modules and a system formed by connecting the modules for controlling payloads are disclosed. An activation signal is propagated in the system from a module to the modules connected to it. Upon receiving an activation signal, the module (after a pre-set or random delay) activates a payload associated with it, and transmits the activation signal (after another pre-set or random delay) to one or more modules connected to it. The system is initiated by a master module including a user activated switch producing the activation signal. The activation signal can be propagated in the system in one direction from the master to the last module, or carried bi-directionally allowing two way propagation, using a module which revert the direction of the activation signal propagation direction. A module may be individually powered by an internal power source such as a battery, or connected to external power source such as AC power. The system may use remote powering wherein few or all of the modules are powered from the same power source connected to the system in a single point. The power may be carried over dedicated wires or concurrently with the conductors carrying the activation signal. The payload may be a visual or an audible signaling device, and can be integrated within a module or external to it. The payload may be powered by a module or using a dedicated power source, and can involve randomness associated with its activation such as the delay, payload control or payload activation.
Abstract:
A serial intelligent cell (SIC) and a connection topology for local area networks using Electrically-conducting media. A local area network can be configured from a plurality of SIC's interconnected so that all communications between two adjacent SIC's is both point-to-point and bidirectional. Each SIC can be connected to one or more other SIC's to allow redundant communication paths. Communications in different areas of a SIC network are independent of one another, so that, unlike current bus topology and star topology, there is no fundamental limit on the size or extent of a SIC network. Each SIC can optionally be connected to one or more data terminals, computers, telephones, sensors, actuators, etc., to facilitate interconnectivity among such devices. Networks according to the present invention can be configured for a variety of applications, including a local telephone system, remote computer bus extender, multiplexers, PABX/PBX functionality, security systems, and local broadcasting services. The network can use dedicated wiring, as well as existing wiring as the in-house telephone or electrical wiring.
Abstract:
A local area network (60) within a residence or other building, including both wired (5) and non-wired segments (53). The wired segments are based on new or existing wires (5a, 5b, 5c, 5d, 5e) in the building, wherein access to the wires is provided by means of outlets (61a, 61d), such as a telephone system, electrical power distribution system, or cable television wiring system. The non-wired segments are based on communication using propagated waves such as radio, sound, or light (e.g. infrared). The wired and non-wired segments interface in the outlet, using a module (50) that serves as mediator between the segments. The module can be integrated into the outlet, partially housed in the outlet, or attached externally to the outlet. Such a network allows for integrated communication of data units (24b) connected by wires and data units (24a, 24d) connected without wires.
Abstract:
Method, modules and a system formed by connecting the modules for controlling payloads. An activation signal is propagated in the system from one module to the modules connected to it. Upon receiving an activation signal, the module (after a pre-set or random delay) activates a payload associated with it, and transmits the activation signal (after another pre-set or random delay) to one or more modules connected to it. The system is initiated by a master module including a user activated switch producing the activation signal. The activation signal can be propagated in the system in one direction from the master to the last module, or carried bi-directionally allowing two way propagation, using a module which revert the direction of the activation signal propagation direction. A module may be individually powered by an internal power source such as a battery, or connected to an external power source such as AC power.
Abstract:
System and method for control using face detection or hand gesture detection algorithms in a captured image. Based on the existence of a detected human face or a hand gesture in an image captured by a digital camera, a control signal is generated and provided to a device. The control may provide power or disconnect power supply to the device (or part of the device circuits). The location of the detected face in the image may be used to rotate a display screen to achieve a better line of sight with a viewing person. The difference between the location of the detected face and an optimum is the error to be corrected by rotating the display to the required angular position. A hand gesture detection can be used as a replacement to a remote control for to the controlled unit, such as a television set.