摘要:
A high resolution active matrix backplane is fabricated using techniques applicable to flexible substrates. A backplane layer including active semiconductor devices is formed on a semiconductor-on-insulator substrate. The backplane layer is spalled from the substrate. A frontplane layer including passive devices such as LCDs, OLEDs, photosensitive materials, or piezo-electric materials is formed over the backplane layer to form an active matrix structure. The active matrix structure may be fabricated to allow bottom emission and provide mechanical flexibility.
摘要:
Aspects of the invention provide for preventing undercuts during wafer etch processing and enhancing back-gate to channel electrical coupling. In one embodiment, aspects of the invention include a semiconductor structure, including: a high-k buried oxide (BOX) layer atop a bulk silicon wafer, the high-k BOX layer including: at least one silicon nitride layer; and a high-k dielectric layer; and a silicon-on-insulator (SOI) layer positioned atop the high-k BOX layer.
摘要:
A photoreceptor includes a multilayer blocking structure to reduce dark discharge of the surface voltage of the photoreceptor resulting from electron injection from an electrically conductive substrate. The multilayer blocking structure includes wide band gap semiconductor layers in alternating sequence with one or more narrow band gap blocking layers. A fabrication method of the photoreceptor includes transfer-doping of the narrow band gap blocking layers, which are deposited in alternating sequence with wide band gap semiconductor layers to form a blocking structure. Suppression of hole or electron injection can be obtained using the method.
摘要:
A method of forming a transistor device includes forming a patterned gate structure over a semiconductor substrate, forming a raised source region over the semiconductor substrate adjacent a source side of the gate structure, and forming silicide contacts on the raised source region, on the patterned gate structure, and on the semiconductor substrate adjacent a drain side of the gate structure. Thereby, a hybrid field effect transistor (FET) structure having a drain side Schottky contact and a raised source side ohmic contact is defined.
摘要:
A high resolution active matrix backplane is fabricated using techniques applicable to flexible substrates. A backplane layer including active semiconductor devices is formed on a semiconductor-on-insulator substrate. The backplane layer is spalled from the substrate. A frontplane layer including passive devices such as LCDs, OLEDs, photosensitive materials, or piezo-electric materials is formed over the backplane layer to form an active matrix structure. The active matrix structure may be fabricated to allow bottom emission and provide mechanical flexibility.
摘要:
A semiconductor structure which includes a semiconductor on insulator (SOI) substrate. The SOI substrate includes a base semiconductor layer; a buried oxide (BOX) layer in contact with the base semiconductor layer; and an SOI layer in contact with the BOX layer. The semiconductor structure further includes a circuit formed with respect to the SOI layer, the circuit including an N type field effect transistor (NFET) having source and drain extensions in the SOI layer and a gate; and a P type field effect transistor (PFET) having source and drain extensions in the SOI layer and a gate. There may also be a well under each of the NFET and PFET. There is a nonzero electrical bias being applied to the SOI substrate. One of the NFET extensions and PFET extensions may be underlapped with respect to the NFET gate or PFET gate, respectively.
摘要:
A high resolution active matrix backplane is fabricated using techniques applicable to flexible substrates. A backplane layer including active semiconductor devices is formed on a semiconductor-on-insulator substrate. The backplane layer is spalled from the substrate. A frontplane layer including passive devices such as LCDs, OLEDs, photosensitive materials, or piezo-electric materials is formed over the backplane layer to form an active matrix structure. The active matrix structure may be fabricated to allow bottom emission and provide mechanical flexibility.
摘要:
A method for forming a semiconductor device includes forming a gate stack on a monocrystalline substrate. A surface of the substrate adjacent to the gate stack and below a portion of the gate stack is amorphorized. The surface is etched to selectively remove a thickness of amorphorized portions to form undercuts below the gate stack. A layer is epitaxially grown in the thickness and the undercuts to form an extension region for the semiconductor device. Devices are also provided.
摘要:
An extremely-thin silicon-on-insulator transistor includes a buried oxide layer above a substrate. The buried oxide layer, for example, has a thickness that is less than 50 nm. A silicon layer is above the buried oxide layer. A gate stack is on the silicon layer includes at least a gate dielectric formed on the silicon layer and a gate conductor formed on the gate dielectric. A gate spacer has a first part on the silicon layer and a second part adjacent to the gate stack. A first raised source/drain region and a second raised source/drain region each have a first part that includes a portion of the silicon layer and a second part adjacent to the gate spacer. At least one embedded stressor is formed at least partially within the substrate that imparts a predetermined stress on a silicon channel region formed within the silicon layer.
摘要:
A device and method for forming a semiconductor device include growing a raised semiconductor region on a channel layer adjacent to a gate structure. A space is formed between the raised semiconductor region and the gate structure. A metal layer is deposited on at least the raised semiconductor region. The raised semiconductor region is silicided to form a silicide into the channel layer which extends deeper into the channel layer at a position corresponding to the space.