Abstract:
A liner is advanced through a narrowed region in a vessel such as the internal carotid artery. The liner is advanced through the narrowed region in a collapsed position. A stent is then advanced through the liner and expanded to open the narrowed region. The liner may also have an anchor which expands an end of the liner before the stent is introduced.
Abstract:
Devices and methods for removing an obstruction from a blood vessel are described. The devices are deployed in a collapsed condition and are then expanded within the body. The devices are then manipulated to engage and remove the obstruction.
Abstract:
A device for delivering an occlusion element, or other medical device, which includes a fluid dissolvable bond. The occlusion element is coupled to the delivery element with the fluid dissolvable bond. The bond may be dissolved by delivering a fluid through the delivery element either through the delivery element itself or through a tube positioned in the delivery element.
Abstract:
Devices and methods for removing an obstruction from a blood vessel are described. The devices are deployed in a collapsed condition and are then expanded within the body. The devices are then manipulated to engage and remove the obstruction.
Abstract:
The invention is also directed to a device for treating an aneurysm which has a cover covering the neck of the aneurysm and a lateral portion extending into the aneurysm. The invention is also directed to a cover which is used to cover the neck of the aneurysm thereby isolating the aneurysm from the parental vessel.
Abstract:
The invention is methods and devices which a surgeon may use to stabilize the beating heart during a surgical procedure on the heart. Pursuant to the invention, a stabilizing device is introduced through an opening in the chest and brought into contact with the beating heart. By contacting the heart with the device and by exerting a stabilizing force on the device, the motion of the heart caused by the contraction of the heart muscles is effectively eliminated such that the heart is stabilized and the site of the surgery moves only minimally if at all. Typically, in separate steps, the surgeon contacts the heart with the stabilizing means, assesses the degree of movement of the anastomosis site, and exerts a force on the stabilizing means such that the contraction of the beating heart causes orgy minimal excess motion at the surgery site. By fixing the position of the stabilizing means in a configuration where the motion of the beating heart is effectively eliminated, the surgeon is able to stabilize the beating heart for the duration of the procedure. The stabilizing means may be attached to a rigid support or may be attached to a semi-rigid support which is rendered motionless mechanically, chemically, or by human intervention. In certain preferred embodiments, the stabilizing means is affixed to a semi-rigid support which is caused to become rigid, by any of a variety of techniques, such that the position of the stabilizing means becomes fixed by the support, and the heart remains substantially motionless for the duration of the procedure.
Abstract:
The invention is surgical instruments which facilitate substantially linear incisions, especially through the wall of vessels, such as arteries, which have been specifically designed for coronary artery bypass graft procedures (CABG) on the beating heart. The instruments of the invention are particularly useful to create the incision in the artery to which the bypass graft is sewed, typically the left anterior descending artery (LAD). The instruments of the invention allow incisions to be rapidly made, precisely measured, and cleanly formed so that a bypass graft can be rapidly sewn in place. In one embodiment, the invention is comprised of a hand-held instrument with a curved cutting edge formed on the interior edge of a curved or arcuitous segment located near the end of the instrument. The tip of the instrument has a point of penetrating the vessel wall. The point may have several alternate shapes to facilitate penetration of the vessel wall while maximizing the trauma to the surrounding tissue. Another embodiment is comprised of a hand-held instrument with moveable member such that the incision is created by engaging a cutting blade against a stop with the tissue being cut therebetween. This instrument is also constructed to facilitate a rapid linear incisions in a vessel while minimizing the possibility for damage to the surrounding tissue. In another embodiment, the instrument features a motion-cancelling member which compensates for the movement of the target surface to be incised. This embodiment has a cutting blade which is manipulated form handle which is isolated from the movement of the tissue containing or proximate to the target of the incision. The instruments facilitate the invasive cardiac procedures by creating linear incisions quickly without undue trauma to surrounding tissue and without excess loss of blood.
Abstract:
A system for treating a vascular malformation has an expandable device and a heating device for heating and shrinking the malformation. The expandable device may have deformable elements which plastically deform in the expanded position. The balloon may be self-expanding, balloon expanded or expanded with an actuating rod. A fluid, such as saline, may be introduced during heating when using RF heating. A sealant may also be introduced into the expandable device to further seal the aneurysm.
Abstract:
The present invention is methods and devices for improving valve function in a heart. Particularly a device of the present invention comprises a an elongate member having a distal end and a proximal end, a thermal heating member fixed to the distal end of the elongate member, wherein the thermal heating member includes at least one thermal heating element adapted to supply thermal energy to a heart valve structure, and an energy source in communication with the thermal heating element. In use, a thermal heating device of the present invention is inserted into working space proximate the valve to be treated and is used to selectively contract the collagen fibers of the valve structure treated so as to improve the performance and functioning of the valve. Devices are disclosed suitable for use with a variety of access procedures on both beating and non-beating hearts, including: a minimally invasive surgical procedure, a sternotomy, a thoracotomy, an endovascular procedure, and endoscopic procedure, or a percutaneous procedure. Methods and devices are disclosed which are suitable for treatment of a chordae, leaflet, or annulus, as well as devices and methods for the replacement of heart valve with prosthetic valves.
Abstract:
A surgical instrument is configured to aid in performing a procedure of detaching an internal mammary artery (IMA) and the like, from the connecting tissues and side branch vessels which surround the artery in its native location, wherein the detaching procedure is preliminary to the performing of a coronary artery bypass grafting procedure and wherein the IMA is detached via a minimally invasive thoracotomy. To this end, an elongated slender rod includes a handle at its proximal end and an artery engaging loop, arc, fork configuration, or hook at its distal working end. Embodiments may incorporate electrosurgical capability or electrical insulation. A surgeon thus has means for harvesting an intact and undamaged graft vessel from its native location through a minimally invasive incision with enhanced speed, visibility, and freedom of motion.