摘要:
Semiconductor devices include a first and a second set of parallel fins, each set of fins having a same number of fins and a pitch between adjacent fins below a minimum pitch of an associated lithography process, where a spacing between the first and second set of fins is greater than the pitch between adjacent fins; a gate structure over the first and second sets of fins; a merged source region that connects the first and second sets of fins on a first side of the gate structure; and a merged drain region that connects the first and second sets of fins on a second side of the gate structure.
摘要:
A semiconductor device having a doped well area includes a doped substrate layer formed on a substrate portion of the semiconductor device. The doped substrate layer extends along a first direction to define a length and a second direction perpendicular to the first direction to define a width. A plurality of fins is formed on the doped substrate layer and an oxide substrate layer is formed between each fin. At least one gate is formed on the oxide substrate layer and extends across at least one fin among the plurality of fins.
摘要:
Etching interleaved structures of semiconductor material forming fins of finFETs and local isolation material interposed between the fins is performed alternately and cyclically by alternating etchants cyclically such as by alternating gases during reactive ion etching. Etchants are preferably alternated when one of the semiconductor material and the local isolation material protrudes above the other by a predetermined distance. Since protruding surfaces are etched more rapidly than recessed surfaces, the overall etching process is accelerated and completed in less time such that erosion of other materials to which the etchants are less than optimally selective is reduced and allow improved etching of trenches for improved isolation structures to be formed.
摘要:
Semiconductor devices include a first and a second set of parallel fins, each set of fins having a same number of fins and a pitch between adjacent fins below a minimum pitch of an associated lithography process, where a spacing between the first and second set of fins is greater than the pitch between adjacent fins; a gate structure over the first and second sets of fins; a merged source region that connects the first and second sets of fins on a first side of the gate structure; and a merged drain region that connects the first and second sets of fins on a second side of the gate structure.
摘要:
Semiconductor devices and sidewall image transfer methods with a spin on hardmask. Methods for forming fins include forming a trench through a stack of layers that includes a top and bottom insulator layer, and a layer to be patterned on a substrate; isotropically etching the top and bottom insulator layers; forming a hardmask material in the trench to the level of the bottom insulator layer; isotropically etching the top insulator layer; and etching the bottom insulator layer and the layer to be patterned down to the substrate to form fins from the layer to be patterned.
摘要:
A semiconductor device having a doped well area includes a doped substrate layer formed on a substrate portion of the semiconductor device. The doped substrate layer extends along a first direction to define a length and a second direction perpendicular to the first direction to define a width. A plurality of fins is formed on the doped substrate layer and an oxide substrate layer is formed between each fin. At least one gate is formed on the oxide substrate layer and extends across at least one fin among the plurality of fins.
摘要:
A metal layer is deposited over a material layer. The metal layer includes an elemental metal that can be converted into a dielectric metal-containing compound by plasma oxidation or nitridation. A hard mask portion is formed over the metal layer. A plasma impermeable spacer is formed on at least one first sidewall of the hard mask portion, while at least one second sidewall of the hard mask portion is physically exposed. Plasma oxidation or nitridation is performed to convert physically exposed surfaces of the metal layer into the dielectric metal-containing compound. A sequence of a surface pull back of the hard mask portion, cavity etching, another surface pull back, and conversion of top surfaces into the dielectric metal-containing compound are repeated to form a hole pattern having a spacing that is not limited by lithographic minimum dimensions.
摘要:
A method including forming a tetra-layer hardmask above a substrate, the tetra-layer hardmask including a second hardmask layer above a first hardmask layer; removing a portion of the second hardmask layer of the tetra-layer hardmask within a pattern region of a structure comprising the substrate and the tetra-layer hardmask; forming a set of sidewall spacers above the tetra-layer hardmask to define a device pattern; and transferring a portion of the device pattern into the substrate and within the pattern region of the structure.
摘要:
A lithographic material stack including a metal-compound hard mask layer is provided. The lithographic material stack includes a lower organic planarizing layer (OPL), a dielectric hard mask layer, and the metal-compound hard mask layer, an upper OPL, an optional anti-reflective coating (ARC) layer, and a photoresist layer. The metal-compound hard mask layer does not attenuate optical signals from lithographic alignment marks in underlying material layers, and can facilitate alignment between different levels in semiconductor manufacturing.
摘要:
A structure for tone inversion for integrated circuit fabrication includes a substrate; a partially etched underlayer comprising a first pattern located over the substrate, the first pattern being partially etched into a portion of the underlayer such that a remaining portion of the underlayer is protected and forms a second pattern, and such that the first pattern does not expose the substrate located underneath the underlayer; and an image reversal material (IRM) layer located over the partially etched underlayer.