Abstract:
A handheld imaging device includes an image sensor for sensing an image; a processor for processing the sensed image; a plurality of processing units provided in the processor, the plurality of processing units connected in parallel by a crossbar switch to form a multi-core processing unit for the processor; and an image sensor interface for converting signals from the image sensor to a format readable by the plurality of processing units, the image sensor interface sharing a wafer substrate with the processor. A transfer of data from the image sensor interface to the plurality of processing units is conducted entirely on the shared wafer substrate.
Abstract:
A portable handheld device includes an image sensor for capturing an image; an image sensor interface for receiving data from the image sensor; a DRAM for storing the data received by the image sensor interface; an image processor for storing the image the DRAM, the image processor including a plurality of micro-coded processing units; a central processor for instructing the image processor; and an orientation sensor for sensing a rotation of the protable handheld device at a time of sensing the image. The central processor is configured to load the plurality of micro-coded processing units of the image processor with micro-code for performing an affine transform of the data in the DRAM to rotate the data in the DRAM by a rotation corresponding to the rotation sensed by the orientation sensor.
Abstract:
A camera system including: a substrate having a coding pattern printed thereon anda handheld digital camera device. The camera device includes: a digital camera unit having a first image sensor for capturing images and a color display for displaying captured images to a user; and an integral processor configured for: controlling operation of the first image sensor and color display; decoding an imaged coding pattern printed on a substrate; and performing an action in the handheld digital camera device based on the decoded coding pattern. The decoding includes the steps of: identifying a data block in the imaged coding pattern; decoding a control block to determine the size of data to be extracted from a data area; and decoding the coding pattern contained in ae data area of the data block.
Abstract:
An image sensing and printing digital camera device includes a housing defining a slot for receiving a printed instruction card having printed thereon an array of dots representing a programming script, the housing further storing therein a roll of print media; an area image sensor for sensing an image and generating pixel data representing the image; a linear image sensor for scanning the array of dots on the card and converting the array of dots into a data signal; a microcontroller provided in the housing, the microcontroller for decoding the data signal into the programming script and applying the programming script on the pixel data; and a printing mechanism for printing the pixel data, having applied thereto the programming script, on the roll of print media. The microcontroller integrates on a single chip a VLIW processor, a printhead interface, and an output buffer effecting communication between the VLIW processor and the printhead interface.
Abstract:
An image sensing and printing digital camera device includes a housing defining a slot for receiving a printed instruction card having printed thereon an array of dots representing a programming script, the housing further storing therein a roll of print media; an area image sensor for sensing an image and generating pixel data representing the image; a linear image sensor for scanning the array of dots on the card and converting the array of dots into a data signal; a microcontroller provided in the housing, the microcontroller for decoding the data signal into the programming script and applying the programming script on the pixel data; and a printing mechanism for printing the pixel data, having applied thereto the programming script, on the roll of print media. The microcontroller integrates on a single chip a VLIW processor, a printhead interface, and an output buffer effecting communication between the VLIW processor and the printhead interface.
Abstract:
A handheld imaging device includes an image sensor for sensing an image; and a micro-controller provided on a wafer substrate, the micro-controller integrating on the same wafer substrate as a system-on-chip device, a plurality of processing units and an image sensor interface for effecting data communication between the image sensor the plurality of processing units.
Abstract:
According to an aspect of the disclosure, a portable handheld device includes a CPU for processing a script; a multi-core processor for processing an image, and a DRAM for storing image data. The CPU and the multi-core processor are integrated on one chip and share a data cache provided on the same chip. The DRAM is provided external to the chip. The portable handheld device further comprises a DRAM interface for receiving and sending data to the DRAM, the DRAM interface being provided on the same chip and sharing the data cache with the CPU and the multi-core processor.
Abstract:
In the present invention, a number of times the brightness changes detected at the same position while a substrate conveys are added up in the conveying direction, thereby obtaining a plurality of edge count data, and then, a plurality of positions of long sides of patterns parallel to the conveying direction is identified based on the plurality of edge count data exceeding a predetermined threshold value, middle point positions of a plurality of proximity pairs are calculated, and a middle point position close to the target position preset in the imaging device is selected from the plurality of middle point positions of the proximity pairs, an amount of position displacement between the selected middle point position and the target position of imaging device is calculated, and the photomask in the direction substantially perpendicular to the conveying direction so that the amount of position displacement is a predetermined value.
Abstract:
A method for producing an optical orientation film is disclosed, the method being able to realize highly accurate exposure in a pattern, even if a simple device and non-parallel light are used and a long continuous resin substrate is used and fed continuously. The method for producing the optical orientation film includes the steps of: (i) preparing an irradiation target substrate and a long continuous photomask (ii) feeding the irradiation target substrate continuously; (iii) feeding the photomask continuously; (iv) producing a laminate by laminating the photomask fed in step (iii) on an orientation layer of the irradiation target substrate fed in step (ii); (v) exposing the orientation layer in the pattern by irradiating with light, while feeding the laminate obtained in step (iv) in the longitudinal direction of the laminate; and (vi) removing the photomask from the laminate irradiated in step (v).
Abstract:
A destination address of transmission of designated image data attached to e-mail and a notification destination address to be notified of error information if a transmission error occurs are set. If a transmission error occurs due to size excess of the transmitted e-mail, retransmission confirmation information containing the error information and designate input accept information for accepting designate input which designates whether to execute retransmission of the e-mail in which the transmission error has occurred is generated. The generated retransmission confirmation information is notified to a notification destination specified by the set notification destination address.