Abstract:
An assembly (100) for attenuating the impinging light of a beam of radiation of finite expansion with the objective of realizing reliable attenuation particularly of directly impinging light comprises a light source (10) for producing a beam of unpolarized light, preferably unpolarized monochromatic light, a useful light region (50) through which the unpolarized light passes and preferably passes through in a straight line from the light source (10) as well as an absorption device (30) arranged downstream of the useful light region (50) and preferably downstream in the direction of the direct beam radiation for at least partly absorbing impinging light, wherein the absorption device (30) comprises at least one polarization device (31, 32) arranged in the direction of the light beam.
Abstract:
A device for measuring floating micro-organisms and an air conditioner including a device for measuring floating micro-organisms are provided. The device for measuring floating micro-organisms may include an air flow path through which air including floating micro-organisms may flow, a first main body provided at a first side of the air flow path and having a first space and a second space, a second main body provided at a second side of the air flow path and in which a collecting portion to collect the floating micro-organisms may be provided, a light emitter provided in the first space that emits a predetermined wavelength range of light toward the collecting portion, and a light receiver provided in the second space that detects a fluorescence signal generated from light which acts on riboflavin contained in the floating micro-organisms.
Abstract:
A diagnostic analyzer includes a track, a light-blocking member, a motor, and an optical testing device. The track moves a reaction vessel held by the track. The light-blocking member is disposed adjacent to the track. The light-blocking member moves from a first position apart from the track to a second position closer to the track. When the light-blocking member is disposed in the first position a sample contained within the reaction vessel held by the track is exposed to light. When the light-blocking member is disposed in the second position the sample contained within the reaction vessel held by the track is blocked from exposure to the light. The motor moves the light-blocking member between the first and the second positions. The optical testing device is disposed adjacent to the track for optically testing the sample contained within the reaction vessel held by the track when the at least one light-blocking member is disposed in the second position.
Abstract:
The invention relates to a method for quantitatively determining biological analytes in an aqueous solution in the presence of one or more functionalised surfaces, wherein the aqueous solution comprises at least one type of biological analyte and at least one type of fluorescence marker, characterised in that the quantity and/or concentration of the biological analyte or analytes is determined by measuring the fluorescence emission of the unbound fluorescence markers, as well as to a devices for carrying out said method.
Abstract:
The invention relates to a light integrating cavity device, such as an integrating sphere, for measuring diffuse reflectance of a sample. A light trap is movable within a light scattering cavity of the device for controlling specular reflections during measurements. The light trap may be rotatable around the sample under test inside the cavity so that specular reflections off the sample can be included or excluded from the measurement. The sample may also be placed at the outside against a measurement port, and a measurement instrument is moveable on a rotating arm within or outside of the cavity.
Abstract:
A structure for testing a luminescent film includes a Lambertian light source, an integrating sphere having an input port, and a measuring device. The Lambertian light source includes a mixing chamber having an input port and an output port, and a light emitter coupled to the input port. During testing the luminescent film is positioned between the output port of the mixing chamber and the input port of the integrating sphere. The measuring device is optically coupled to the integrating sphere.
Abstract:
A nephelometric process turbidimeter for measuring a turbidity of a liquid sample includes a transparent sample vial which comprises a sample vial lateral inner surface. A vial head comprises a vial head lateral inner surface. The vial head and the sample vial together define a sample volume of a liquid sample having a shape of a cylinder. A sample inlet opening is arranged at the vial head and comprises an inlet opening axis. A sample outlet opening is arranged at the cylindrical vial head lateral inner surface to be axially closer to the sample vial than to the sample outlet opening. The inlet opening axis is inclined with respect to an inlet cross plane with an inclination angle of 10° to 80°, and is angled with respect to a radius line from a middle of the cylinder to the sample inlet opening with a tangency angle of more than 15°.
Abstract:
A flow cell for a fluorescence spectrometer includes a flow channel to receive a flow of a liquid sample, an excitation light entrance window to receive excitation light from a light source, and an emission light exit window to transmit fluorescent emission light from the liquid sample in the flow channel from the flow cell. The excitation light entrance window and/or emission light exit window includes a waveguide including: a waveguide core formed of a core material; and a cladding medium surrounding a portion of the waveguide core, wherein the cladding medium has a refractive index less than the refractive index of the core material. The waveguide defines a portion of the flow channel.
Abstract:
The invention relates to the field of medicine and biology. A device for monitoring of spatial coagulation of blood and its uses for diagnostic and research purposes is described. The device includes a thermostatically controlled chamber, at least one means of illumination, a means of recording connected to the thermostatically controlled chamber. The thermostatically controlled chamber includes a cuvette to place a sample of a test medium, a light trap, and is filled with a substance suitable for temperature regulation. The light trap is formed by geometry of the inner surfaces of the thermostatically controlled chamber.
Abstract:
Provided is a pinhole inspection apparatus for can bodies capable of effectively preventing entrance of ambient light to a photodetector side through a gap between a movable plate and a rotating turret that may be formed due to a surface condition or the like. The pinhole inspection apparatus of the present invention includes: a rotating turret having a penetrating through hole; a movable plate provided on a stationary frame opposite the rotating turret; a can body holding member supporting a can body; a photodetector detecting light leaking inside the can body; and a light source irradiating the can body with light. The pinhole inspection apparatus is characterized in that a detour path formed by a pair of shield parts spaced apart a predetermined distance and opposite from each other is provided as a shield mechanism in an entire outer peripheral region of the rotating turret.