Abstract:
The present invention relates to a system as well as a method for extinguishing fire in an enclosed room (6) in which the enclosed room (6) is flooded with extinguishing gas at least until an extinguishing gas concentration capable of providing an extinguishing effect (a) is set in the flood zone. In order to achieve the realizing of a maximum extinguishing gas concentration (b) as quickly as possible without the flooding of the room (6) thereby posing a danger to people, it is inventively provided for the flooding of the enclosed room (6) to be divided into a pre-flooding phase and a main flooding phase subsequent thereto. The pre-flooding phase corresponds to an interval of time between the time (t1) the alarming starts to warn people of impending danger and a predefined time (t2). The main flooding phase corresponds to an interval of time between the predefined time (t2) and the time (t4) at which a maximum extinguishing gas concentration (b) is reached. The enclosed room (6) is flooded such that during the entire pre-flooding phase, the concentration of extinguishing gas in the enclosed room (6) does not exceed a predefined or predefinable value for the extinguishing gas employed which is below the critical NOAEL value.
Abstract:
An assembly (100) for attenuating the impinging light of a beam of radiation of finite expansion with the objective of realizing reliable attenuation particularly of directly impinging light comprises a light source (10) for producing a beam of unpolarized light, preferably unpolarized monochromatic light, a useful light region (50) through which the unpolarized light passes and preferably passes through in a straight line from the light source (10) as well as an absorption device (30) arranged downstream of the useful light region (50) and preferably downstream in the direction of the direct beam radiation for at least partly absorbing impinging light, wherein the absorption device (30) comprises at least one polarization device (31, 32) arranged in the direction of the light beam.
Abstract:
The invention relates to an inerting system as well as an inerting method for reducing oxygen in which an oxygen content which is predefinable and reduced in comparison to normal ambient air is set and maintained in the spatial atmosphere of an enclosed room (2). To this end, the inerting system (1) comprises a compressor system (3) for compressing an initial gas mixture as well as a gas separation system (10) connected to the compressor system (3). At least a portion of the oxygen contained within the compressed initial gas mixture is separated in the gas separation system (10). The gas separation system (10) is designed to be selectively operated in either a VPSA mode or a PSA mode.
Abstract:
The invention relates to a method for determining and/or monitoring the air tightness of an enclosed room (2) which is equipped with an oxygen reducing system (1) and in the atmosphere of which at least one oxygen content that can preferably be determined in advance and is reduced in comparison to the normal surrounding air can be set and maintained in order to prevent and/or extinguish fires by introducing an oxygen-displacing gas. The oxygen reducing system (1) has a compressor system (4; 4.1, 4.2) for compressing an initial gas mixture and a gas separation system (3; 3.1, 3.2) downstream of the compressor system (4; 4.1, 4.2) for separating at least one part of the oxygen contained in the initial gas mixture and for providing a nitrogen-enriched gas which is supplied to the enclosed room (2). The differential pressure set in the room (2) is ascertained and compared to a corresponding reference value, whereby information regarding the air tightness of the room (2) is provided.
Abstract:
The invention relates to an inerting method as well as an inerting system (1) to set and/or maintain a reduced oxygen content in an enclosed room (2), wherein a gas separation system (3.1, 4.1; 3.2, 4.2; 3.3, 4.3) is provided which separates off at least a portion of the oxygen from an initial gas mixture provided in a mixing chamber (6) and by so doing, provides a nitrogen-enriched gas mixture. In order to optimize the operation of the inerting system (1), the invention provides for a portion of the air to be withdrawn from the enclosed room (2) and admixed with fresh air in the mixing chamber (6).
Abstract:
The present invention relates to a gas extinguishing system for a predefined protected area, particularly small-parts storage systems, wherein the gas extinguishing system comprises an inert gas source and a diffuser system fluidly connected to the inert gas source by a tubing system. The diffuser system comprises a diffuser tube having a plurality of drill holes provided in the surface of the diffuser tube and a pressure reducer allocated to the diffuser tube. In order to be able to achieve non-interactiveness with respect to the diffuser system from the standpoint of the design of the gas extinguishing system, the inventive provides for designing the diffuser system such that a primary baffle pressure measured in absolute bar is at least twice as high as the internal pressure of the diffuser tube during the flooding period dimensioned for the protected area and that the internal pressure of the diffuser tube during the dimensioned flooding period is at a maximum of 2 bar absolute.
Abstract:
The present invention relates to a system as well as a method for extinguishing fire in an enclosed room (6) in which the enclosed room (6) is flooded with extinguishing gas at least until an extinguishing gas concentration capable of providing an extinguishing effect (a) is set in the flood zone. In order to achieve the realizing of a maximum extinguishing gas concentration (b) as quickly as possible without the flooding of the room (6) thereby posing a danger to people, it is inventively provided for the flooding of the enclosed room (6) to be divided into a pre-flooding phase and a main flooding phase subsequent thereto. The pre-flooding phase corresponds to an interval of time between the time (t1) the alarming starts to warn people of impending danger and a predefined time (t2). The main flooding phase corresponds to an interval of time between the predefined time (t2) and the time (t4) at which a maximum extinguishing gas concentration (b) is reached. The enclosed room (6) is flooded such that during the entire pre-flooding phase, the concentration of extinguishing gas in the enclosed room (6) does not exceed a predefined or predefinable value for the extinguishing gas employed which is below the critical NOAEL value.
Abstract:
The invention relates to an inerting system as well as an inerting method for reducing oxygen in which an oxygen content which is predefinable and reduced in comparison to normal ambient air is set and maintained in the spatial atmosphere of an enclosed room (2). To this end, the inerting system (1) comprises a compressor system (3) for compressing an initial gas mixture as well as a gas separation system (10) connected to the compressor system (3). At least a portion of the oxygen contained within the compressed initial gas mixture is separated in the gas separation system (10). The gas separation system (10) is designed to be selectively operated in either a VPSA mode or a PSA mode.
Abstract:
The invention relates to a bus system (1) comprising a control unit (2) and at least one bus node (3.1, 3.2, 3.3). The control unit (2) is allocated at least two data communication interfaces (2.1, 2.2) which are respectively designed to transmit and receive data. The at least one bus node (3.1, 3.2, 3.3) comprises a bus coupler having at least two data communication interfaces (3.11, 3.12; 3.21, 3.22; 3.31, 3.32) respectively designed to transmit and receive data. The control unit (2) and the at least one bus node (3.1, 3.2, 3.3) are respectively connected together via their data communication interfaces and corresponding two-point connections (8) to form a ring topology. The bus coupler of the at least one bus node is designed to directly and without delay transmit, and thus forward, data received at one of its at least two communication interfaces via its other data communication interface.
Abstract:
The invention relates to a method for determining and/or monitoring the air tightness of an enclosed room (2) which is equipped with an oxygen reducing system (1) and in the atmosphere of which at least one oxygen content that can preferably be determined in advance and is reduced in comparison to the normal surrounding air can be set and maintained in order to prevent and/or extinguish fires by introducing an oxygen-displacing gas. The oxygen reducing system (1) has a compressor system (4; 4.1, 4.2) for compressing an initial gas mixture and a gas separation system (3; 3.1, 3.2) downstream of the compressor system (4; 4.1, 4.2) for separating at least one part of the oxygen contained in the initial gas mixture and for providing a nitrogen-enriched gas which is supplied to the enclosed room (2). The differential pressure set in the room (2) is ascertained and compared to a corresponding reference value, whereby information regarding the air tightness of the room (2) is provided.