Abstract:
A memory device may include a first electrode and a second electrode spaced apart from the first electrode. The memory device may further include a memory element disposed between the first electrode and the second electrode and a switching element disposed between the first electrode and the second electrode. The switching element may be configured to control signal access to the memory element. The memory device may further include a barrier layer disposed between the memory element and the switching element, the barrier layer including an insulation material.
Abstract:
An integrated circuit device includes a substrate, an insulating structure on a frontside surface of the substrate, a contact structure including a first plug portion that extends through the substrate, and a self-assembled organic material insulating liner between the first plug portion and the substrate.
Abstract:
A method for operating a memory device includes sensing a temperature of the resistive memory device, setting a level of a set voltage or current for writing to a memory cell based on the temperature, setting a level of a reset voltage for reset writing to the memory cell based on the temperature, and performing a write operation on the memory cell based on the level of the set voltage or current and the level of the reset voltage. The memory device may be a resistive memory device.
Abstract:
A resistive switching device includes a first material layer between a first electrode and a second electrode. The first material layer has a first region and a second region parallel to the first region. The first region corresponds to a conducting path formed in the first material layer, and is configured to switch from a low-resistance state to a high-resistance state in response to an applied voltage that is greater than or equal to a first voltage. The second region is configured to switch to a first resistance value that is less than a resistance value of the first region in the high-resistance state when the applied voltage is greater than or equal to a second voltage. The first region remains constant or substantially constant when the second region has the first resistance value.
Abstract:
A method for operating a memory device includes sensing a change in temperature of the memory device, adjusting a level of a reference current for a read operation, and reading data from memory cells of the memory device based on the adjusted level of the reference current. The level of the reference current is adjusted from a reference value to a first value when the temperature of the memory device increases and is adjusted from the reference value to a second value when the temperature of the memory device decreases. A difference between the reference value and the first value is different from a difference the reference value and the second value.
Abstract:
A method of controlling a resistive memory device includes: accessing a first pulse power specification satisfying a memory cell coefficient associated with at least a first of a plurality of memory cells included in a memory cell array; generating a first pulse power according to the accessed first pulse power specification; and performing a write operation on at least the first of the plurality of memory cells using the generated first pulse power.