Abstract:
A polishing slurry for silicon, a method of polishing polysilicon, and a method of manufacturing a thin film transistor substrate, the slurry including a polishing particle; a dispersing agent including an anionic polymer, a hydroxyl acid, or an amino acid; a stabilizing agent including an organic acid, the organic acid including a carboxyl group; a hydrophilic agent including a hydrophilic group and a hydrophobic group, and water, wherein the polishing particle is included in the polishing slurry in an amount of about 0.1% by weight to about 10% by weight, based on a total weight of the slurry, a weight ratio of the polishing particle and the dispersing agent is about 1:0.01 to about 1:0.2, a weight ratio of the polishing particle and the stabilizing agent is about 1:0.001 to about 1:0.1, and a weight ratio of the polishing particle and the hydrophilic agent is about 1:0.01 to about 1:3.
Abstract:
An organic light emitting diode display includes: a substrate including a first and a second gate electrode formed over a first and a second region, respectively, a first and a second gate insulator formed on the first and the second gate electrode, respectively, a first and a second semiconductor layer formed on the first and the second gate insulator, respectively, the first semiconductor layer including a first channel region, the second semiconductor layer including a second channel region, an interlayer insulator formed over the substrate and over at least part of the first and second semiconductor layers, a first and a second etching stop layer formed over the first and second channel regions, respectively, and surrounded by the interlayer insulator, and a first and a second source electrode and a first and a second drain electrode contacting the first and the second semiconductor layer, respectively, through the interlayer insulator.
Abstract:
A laser annealing apparatus includes a lens unit configured to transmit a laser beam to be irradiated onto an irradiation target; a lens unit housing accommodating the lens unit and having an opening configured to allow the laser beam to pass through the opening; a blocking plate configured to block at least a portion of the laser beam reflected by the irradiation target after being transmitted through the lens unit to the irradiation target; and a cooling unit between the blocking plate and the lens unit housing.
Abstract:
An OLED display includes a first polysilicon layer pattern on a substrate having a first gate electrode, a second gate electrode, and a first capacitor electrode, a gate insulating layer pattern, a second polysilicon layer pattern including a first active layer, a second active layer, and a capacitor polycrystalline dummy layer, a third amorphous silicon layer pattern including first source and drain resistant contact layers on a predetermined region of the first active layer, second source and drain resistant contact layers on a predetermined region of the second active layer, and a capacitor amorphous dummy layer on the capacitor polycrystalline dummy layer, and a data metal layer pattern including first source/drain electrodes, second source/drain electrodes, and a second capacitor electrode.
Abstract:
A laser beam annealing apparatus includes a substrate support configured to support a substrate on which a silicon layer is formed, a laser beam irradiator configured to irradiate a laser beam onto the silicon layer, a photographic unit configured to obtain data with respect to at least a part of the substrate, and a position adjuster configured to adjust a position of at least one of the substrate support or the laser beam irradiator based on the data obtained by the photographic unit.
Abstract:
An apparatus for inspecting crystallization includes a substrate including a semiconductor layer, the semiconductor layer includes a plurality of crystallized regions separated from each other; a stage configured to change a position of the substrate, the substrate being seated thereon; a photographing unit configured to acquire image data regarding the semiconductor layer; an inspection unit configured to obtain inspection data regarding the semiconductor layer; and a control unit configured to output change data regarding a change in the position of the substrate according to the image data acquired by the photographing unit.
Abstract:
An apparatus for crystallizing an active layer of a thin film transistor, the apparatus includes a first laser irradiating a first beam toward a substrate, an amorphous layer on the substrate being crystallizable into the active layer of the thin film transistor by the first beam, and a second laser irradiating a second beam toward the substrate to heat the active layer, the second beam having an asymmetric intensity profile in a scanning direction of the first and second beams.
Abstract:
An organic light emitting diode display includes: a substrate including a first and a second gate electrode formed over a first and a second region, respectively, a first and a second gate insulator formed on the first and the second gate electrode, respectively, a first and a second semiconductor layer formed on the first and the second gate insulator, respectively, the first semiconductor layer including a first channel region, the second semiconductor layer including a second channel region, an interlayer insulator formed over the substrate and over at least part of the first and second semiconductor layers, a first and a second etching stop layer formed over the first and second channel regions, respectively, and surrounded by the interlayer insulator, and a first and a second source electrode and a first and a second drain electrode contacting the first and the second semiconductor layer, respectively, through the interlayer insulator.
Abstract:
A method of controlling a laser beam annealing apparatus to manufacture a thin film transistor substrate, the method including: irradiating a laser beam emitted from a laser beam irradiator onto an amorphous silicon layer on a substrate supported by a substrate support; obtaining photographic data with respect to at least a part of the substrate by using a photographic unit; and adjusting a position of at least one of the substrate support or the laser beam irradiator by using a position adjuster based on the photographic data obtained by the photographic unit.
Abstract:
An apparatus for inspecting crystallization includes a substrate including a semiconductor layer, the semiconductor layer includes a plurality of crystallized regions separated from each other; a stage configured to change a position of the substrate, the substrate being seated thereon; a photographing unit configured to acquire image data regarding the semiconductor layer; an inspection unit configured to obtain inspection data regarding the semiconductor layer; and a control unit configured to output change data regarding a change in the position of the substrate according to the image data acquired by the photographing unit.