Abstract:
A display device includes a display panel and an input detection layer including sensing electrodes disposed on the display panel, and trace lines electrically connected to the sensing electrodes, respectively, in which at least one of the trace lines includes a single layer part, and a multilayer part, a length of an ith trace line and a length of a jth trace line are different from each other, each of the ith trace line and the jth trace line includes the single layer part and the multilayer part, and a length of the single layer part of the ith trace line is substantially equal to that of the single layer part of the jth trace line, and a length of the multilayer part of the ith trace line is different from that of the multilayer part of the jth trace line.
Abstract:
A display device including a display panel, and an input sensor on the display panel, and in which an active area and a peripheral area and includes a first area and a second area spaced apart in a first direction, are defined, the input sensor including first sensing electrodes extending in the first direction, and arranged in a second direction crossing the first, second sensing electrodes extending in the second direction, and arranged in the first direction, first sensing lines extending in the second direction within the active area, connected to the first sensing electrodes, and partially located in the first area, respectively, second sensing lines electrically connected to the second sensing electrodes, respectively, and at least partially located in the second area, and a first guard electrode between the first sensing lines and the second sensing lines, and at a boundary between the first area and the second area.
Abstract:
A display device, including a substrate; a pixel electrode and an opposing electrode on the substrate; an encapsulation portion on the opposing electrode, the encapsulation portion including at least one organic layer and at least one inorganic layer alternately deposited; and a planarization layer on the encapsulation portion, the planarization layer including a portion covering an edge portion of the encapsulation portion, a first angle between an edge side surface of the planarization layer and a surface of the substrate being larger than a second angle between an edge side surface of the encapsulation portion and the surface of the substrate.
Abstract:
A display device is disclosed. In one aspect, the display device includes a substrate including a display area and a non-display area adjacent to the display area and a display member formed over the substrate in the display area. The display device also includes an encapsulation layer formed over the display member and encapsulating the display member together with the substrate and a plurality of first touch lines formed over the encapsulation layer in the display area. The first touch lines extend in a first direction. The display device further includes a plurality of second touch lines formed on the same layer as the first touch lines in the display area. The second touch lines extend in the first direction and are spaced apart from the first touch lines.
Abstract:
An organic light emitting diode display includes: a substrate including a first and a second gate electrode formed over a first and a second region, respectively, a first and a second gate insulator formed on the first and the second gate electrode, respectively, a first and a second semiconductor layer formed on the first and the second gate insulator, respectively, the first semiconductor layer including a first channel region, the second semiconductor layer including a second channel region, an interlayer insulator formed over the substrate and over at least part of the first and second semiconductor layers, a first and a second etching stop layer formed over the first and second channel regions, respectively, and surrounded by the interlayer insulator, and a first and a second source electrode and a first and a second drain electrode contacting the first and the second semiconductor layer, respectively, through the interlayer insulator.
Abstract:
A method of manufacturing a substrate for a display device includes forming a first organic layer on a base substrate; forming an inorganic layer on the first organic layer; and forming a second organic layer on the inorganic layer, where the second organic layer includes transition metal particles.
Abstract:
A display device including: a display panel including a light emitting element; and an input detection layer disposed on the display panel and including sensing electrodes and trace lines electrically connected to the sensing electrodes, respectively, in which at least one of the trace lines includes a single layer part including one conductive layer, and a multilayer part including at least two conductive layers disposed on different layers, a length of an ith trace line and a length of a jth trace line are different from each other, each of the ith trace line and the jth trace line includes the single layer part and the multilayer part, and a length ratio of the single layer part and the multilayer part of the ith trace line is different from a length ratio of the single layer part and the multilayer part of the jth trace line.
Abstract:
A display device including a display panel, and an input sensor on the display panel, and in which an active area and a peripheral area and includes a first area and a second area spaced apart in a first direction, are defined, the input sensor including first sensing electrodes extending in the first direction, and arranged in a second direction crossing the first, second sensing electrodes extending in the second direction, and arranged in the first direction, first sensing lines extending in the second direction within the active area, connected to the first sensing electrodes, and partially located in the first area, respectively, second sensing lines electrically connected to the second sensing electrodes, respectively, and at least partially located in the second area, and a first guard electrode between the first sensing lines and the second sensing lines, and at a boundary between the first area and the second area.
Abstract:
An electronic device includes a display unit having a plurality of pixels. Each of the pixels includes a transistor and a light-emitting element. A plurality of signal lines is connected to the pixels. An encapsulation layer covers the pixels. The display unit includes a display region and a non-display region adjacent to the display region in a plan view. A sensing unit includes a plurality of sensing patterns overlapping the display region. A plurality of sensing pads overlaps the non-display region. A plurality of sensing lines electrically connects the sensing patterns and the sensing pads. A bridge line is connected to a first sensing line and a corresponding first sensing pad. The bridge line is bent to extend in a direction that is different from an extending direction of the first sensing line to connect the bridge line to the first sensing pad.
Abstract:
A display device, including a substrate; a pixel electrode and an opposing electrode on the substrate; an encapsulation portion on the opposing electrode, the encapsulation portion including at least one organic layer and at least one inorganic layer alternately deposited; and a planarization layer on the encapsulation portion, the planarization layer including a portion covering an edge portion of the encapsulation portion, a first angle between an edge side surface of the planarization layer and a surface of the substrate being larger than a second angle between an edge side surface of the encapsulation portion and the surface of the substrate.