Abstract:
This invention relates to a process for the recovery of cobalt ions and tungstic acid and/or its derivatives from aqueous solutions, such as in particular the spent catalytic waters deriving from processes for the oxidative cleavage of vegetable oils. In particular this invention relates to a process for the recovery of cobalt ions and tungstic acid and/or its derivatives which provides for the use of cation-exchange resins.
Abstract:
This invention relates to a process for the recovery of cobalt ions and tungstic acid and/or its derivatives from aqueous solutions, such as in particular the spent catalytic waters deriving from processes for the oxidative cleavage of vegetable oils. In particular this invention relates to a process for the recovery of cobalt ions and tungstic acid and/or its derivatives which provides for the use of cation-exchange resins.
Abstract:
A continuous process for the oxidative cleavage of vegetable oils containing triglycerides of unsaturated carboxylic acids, to obtain saturated carboxylic acids, comprising feeding to a first continuous reactor a vegetable oil, an oxidizing compound and catalyst capable of catalyzing the oxidation reaction of the olefinic double bond to obtain an intermediate compound containing vicinal diols: feeding to a second continuous reactor said intermediate compound, a compound containing oxygen and a catalyst capable of catalyzing the oxidation reaction of the vicinal diols to carboxylic groups, to obtain saturated monocarboxylic acids (i) and triglycerides containing saturated carboxylic acids with more than one acid function (ii); separating the saturated monocarboxylic acids (i) from the triglycerides (ii); hydrolyzing in a third reactor the triglycerides (ii) to obtain glycerol and saturated carboxylic acids with more than one acid function; and purifying said saturated carboxylic acids by fractioned crystallization by means of wash column (melt crystallization).
Abstract:
A continuous process for the oxidative cleavage of vegetable oils containing triglycerides of unsaturated carboxylic acids, to obtain saturated carboxylic acids, comprising feeding to a first continuous reactor a vegetable oil, an oxidizing compound and catalyst capable of catalyzing the oxidation reaction of the olefinic double bond to obtain an intermediate compound containing vicinal diols: feeding to a second continuous reactor said intermediate compound, a compound containing oxygen and a catalyst capable of catalyzing the oxidation reaction of the vicinal diols to carboxylic groups, to obtain saturated monocarboxylic acids (i) and triglycerides containing saturated carboxylic acids with more than one acid function (ii); separating the saturated monocarboxylic acids (i) from the triglycerides (ii); hydrolyzing in a third reactor the triglycerides (ii) to obtain glycerol and saturated carboxylic acids with more than one acid function; and purifying said saturated carboxylic acids by fractioned crystallization by means of wash column (melt crystallization).
Abstract:
This invention relates to a process for the synthesis of 5-hydroxymethylfurfural (HMF) from saccharides. In particular this invention relates to a process for the dehydration of monosaccharides having 6 carbon atoms (hexoses), disaccharides, oligosaccharides, and polysaccharides to yield highly pure 5-hydroxymethylfurfural (HMF) in high yield.
Abstract:
This invention relates to a process for obtaining monocarboxylic and dicarboxylic acids from unsaturated carboxylic acids and/or their derivatives. The said process comprises an oxidative cleavage reaction of vicinal diols into which are fed at least some of the aqueous phase separated out at the end of the reaction itself and at least one base so that the pH of the aqueous solution at the start of the oxidative cleavage reaction is between 4 and 7.
Abstract:
Provided is a continuous process for the oxidative cleavage of derivatives of unsaturated carboxylic acids for the production of saturated carboxylic acids and their derivatives which comprises the steps of: a) feeding to a first reactor at least a derivative of an unsaturated carboxylic acid, an oxidizing compound and a catalyst capable of catalyzing the oxidation reaction of the olefinic double bond to obtain an intermediate compound containing vicinal diols, and of b) feeding to a second reactor said intermediate compound, a compound containing oxygen and a catalyst capable of catalyzing the oxidation reaction of the vicinal diols to carboxylic groups, to obtain saturated monocarboxylic acids (i) and derivatives of saturated carboxylic acids with more than one acid function (ii); c) separating the saturated monocarboxylic acids (i) from the derivatives of carboxylic acids having more than one acid function (ii).
Abstract:
This invention relates to a process for obtaining highly pure aliphatic dialkyl esters of saturated dicarboxylic acids from vegetable oils, which can advantageously be used in polymerization. The process comprises the steps of reacting with an aliphatic alcohol a triglycerides mixture containing at least one triglyceride of at least one saturated dicarboxylic acid in the presence of one or more catalysts capable of catalyzing the esterification and transesterification reactions, and separating the dialkyl esters of saturated dicarboxylic acids from the reaction mixture thus obtained.
Abstract:
The invention relates to a process to prepare complex oligomeric structures obtained from vegetable oils. The process allows to use a mixture of triglycerides containing dicarboxylic acids produced by the oxidative cleavage of vegetable oils as a starting material, these oils being subjected to a step of heating (condensation) followed by a step of esterification with alcohols at temperatures up to 250° C.
Abstract:
A continuous process for the oxidative cleavage of vegetable oils containing triglycerides of unsaturated carboxylic acids, to obtain saturated carboxylic acids, comprising feeding to a first continuous reactor a vegetable oil, an oxidizing compound and catalyst capable of catalyzing the oxidation reaction of the olefinic double bond to obtain an intermediate compound containing vicinal diols: feeding to a second continuous reactor said intermediate compound, a compound containing oxygen and a catalyst capable of catalyzing the oxidation reaction of the vicinal diols to carboxylic groups, to obtain saturated monocarboxylic acids (i) and triglycerides containing saturated carboxylic acids with more than one acid function (ii); separating the saturated monocarboxylic acids (i) from the triglycerides (ii); hydrolyzing in a third reactor the triglycerides (ii) to obtain glycerol and saturated carboxylic acids with more than one acid function; and purifying said saturated carboxylic acids by fractioned crystallization by means of wash column (melt crystallization).