Abstract:
This invention relates to a process for the recovery of cobalt ions and tungstic acid and/or its derivatives from aqueous solutions, such as in particular the spent catalytic waters deriving from processes for the oxidative cleavage of vegetable oils. In particular this invention relates to a process for the recovery of cobalt ions and tungstic acid and/or its derivatives which provides for the use of cation-exchange resins.
Abstract:
Provided is a method of producing a purified chlorogenic acid-containing composition, including: a first step of dispersing or dissolving a raw material chlorogenic acid-containing composition in an aqueous solution of organic solvent; a second step of removing a precipitate from a dispersion or a solution obtained in the first step; and a third step of bringing a solution obtained in the second step into contact with activated carbon including activated carbon (A) having a pore volume of from 0.3 mL/g to 1.0 mL/g and activated carbon (B) having a pore volume larger than that of the activated carbon (A), in which a difference [(B)−(A)] in pore volume between the activated carbon (A) and the activated carbon (B) is from 0.1 mL/g to 1.5 mL/g.
Abstract:
A multi-layer filter material for an interior air filter element of an air conditioning system of a vehicle may include an active layer having a plurality of non-impregnated activated carbon particles, an impregnation layer having a plurality of impregnated activated carbon particles, and an ion exchange layer having a plurality of ion exchanger particles. The active layer may be arranged between the ion exchange layer and the impregnation layer. The active layer may further include a first ash content and the impregnation layer may further include a second ash content. The first ash content in the active layer may be less than the second ash content in the impregnation layer.
Abstract:
Doxorubicin is extracted from blood using anionic material, such as a resin comprising sulfonated polystyrene divinylbenzene beads, and polyethersulfone membrane, or both. After exposing the resin and/or membrane to blood in order to remove doxorubicin therefrom, the doxorubicin maybe extracted from the resin and/or membrane by exposing the material to an extraction solution, sonicating the extraction solution to enhance release of the doxorubicin, and repeating the exposure and sonication in order to remove substantially all of doxorubicin from the resin.
Abstract:
The present invention relates to a bipolar ion exchange sheet and a manufacturing method therefor, the bipolar ion exchange sheet comprising: a cation exchange film comprising a cation adsorption sheet and a cation exchange coating layer formed on one side of the cation adsorption sheet; and an anion exchange film comprising an anion adsorption sheet and an anion exchange coating layer formed on one side of the anion adsorption sheet, wherein the cation exchange film and the anion exchange film are bonded so that the cation exchange coating layer and the anion exchange coating layer face each other.
Abstract:
To provide a porous silica having high alkali resistance; and a chromatographic carrier using such a porous silica. A porous silica comprising a phosphorus oxide component and a zirconium oxide component, wherein the amount of phosphorus atoms per unit specific surface area of the porous silica is from 1 μmol/m2 to 25 μmol/m2; and the amount of zirconium atoms per unit specific surface area of the porous silica is from 1 μmol/m2 to 15 μmol/m2. And, a chromatographic carrier which contains a ligand immobilized to such a porous silica.
Abstract:
Provided is a method of producing a purified chlorogenic acid-containing composition, including: a first step of dispersing or dissolving a raw material chlorogenic acid-containing composition in an aqueous solution of organic solvent; a second step of removing a precipitate from a dispersion or a solution obtained in the first step; and a third step of bringing a solution obtained in the second step into contact with activated carbon including activated carbon (A) having a pore volume of from 0.3 mL/g to 1.0 mL/g and activated carbon (B) having a pore volume larger than that of the activated carbon (A), in which a difference [(B)−(A)] in pore volume between the activated carbon (A) and the activated carbon (B) is from 0.1 mL/g to 1.5 mL/g.
Abstract:
Laundry washing machine (1) having an outer casing (2), a washing tub (3), arranged inside the casing (2), a rotatable drum (4), arranged in axially rotating manner inside the washing tub (3) and designed to receive laundry to be washed, and a detergent dispensing assembly (12), designed for supplying laundry detergent into the washing tub (3). The washing machine also has a water softening system (14), designed to receive fresh water from a water mains (13) and reduce the hardness degree of the fresh water in order to supply softened water the detergent dispensing assembly (12) and/or to the washing tub (3), during one or more softened water laundry washing phases, and a control panel (28) configured to allow operator to input information associated with washing performance/s. A controller (15) is configured to control the water softening system (14) in order to perform a washing program comprising one or more softened water laundry washing phases based on input washing performance/s information.
Abstract:
A method for treating an oil-containing aqueous mixture comprising the step of passing the mixture (1) through a media (6) comprising a low bead-form cation exchange resin combined with a cationic surfactant, wherein the resin includes a sulfonated crosslinked copolymer matrix having a rough surface characterized by having a frequency of at least 5 peaks and valleys per sample surface area (283 μm×212 μm), where the difference between the average height of the 5 highest peaks and the 5 lowest valleys is at least 6 μm.
Abstract:
A method of capturing radioactive species from an aqueous solution and removing the radioactive species for disposal, includes: contacting the aqueous solution with a first sequestration resin comprising a sequestration ligand coupled to a sulfonic acid based polymer resin backbone, to allow the first sequestration resin to capture the radioactive species; removing the first sequestration resin with the captured radioactive species from the aqueous solution; and using an acid to lower a pH of the first sequestration resin to release the radioactive species from the first sequestration resin.