Abstract:
Methods and systems for detecting defects on a specimen are provided. One system includes a storage medium configured for storing images for a physical version of a specimen generated by an inspection system. At least two dies are formed on the specimen with different values of one or more parameters of a fabrication process performed on the specimen. The system also includes computer subsystem(s) configured for comparing portions of the stored images generated at locations on the specimen at which patterns having the same as-designed characteristics are formed with at least two of the different values. The portions of the stored images that are compared are not constrained by locations of the dies on the specimen, locations of the patterns within the dies, or locations of the patterns on the specimen. The computer subsystem(s) are also configured for detecting defects at the locations based on results of the comparing.
Abstract:
Metrology methods are provided, which comprise identifying overlay critical patterns in a device design, the overlay critical patterns having an overlay sensitivity to process variation above a specified threshold that depends on design specifications; and using metrology targets that correspond to the identified overlay critical patterns. Alternatively or complementarily, metrology methods comprise identifying yield critical patterns according to a corresponding process window narrowing due to specified process variation, wherein the narrowing is defined by a dependency of edge placement errors (EPEs) of the patterns on process parameters. Corresponding targets and measurements are provided.
Abstract:
Disclosed are methods and apparatus for qualifying a photolithographic reticle. A reticle inspection tool is used to acquire at least two images at different imaging configurations from each pattern area of the reticle. A reticle pattern is reconstructed based on each at least two images from each pattern area of the reticle. For each reconstructed reticle pattern, a lithographic process with two or more different process conditions is modeled on such reconstructed reticle pattern to generate two or more corresponding modeled test wafer patterns. Each two or more modelled test wafer patterns is analyzed to identify hot spot patterns of the reticle patterns that are susceptible to the different process conditions altering wafer patterns formed with such hot spot patterns.
Abstract:
The generation of flexible sparse metrology sample plans includes receiving a full set of metrology signals from one or more wafers from a metrology tool, determining a set of wafer properties based on the full set of metrology signals and calculating a wafer property metric associated with the set of wafer properties, calculating one or more independent characterization metrics based on the full set of metrology signals, and generating a flexible sparse sample plan based on the set of wafer properties, the wafer property metric, and the one or more independent characterization metrics. The one or more independent characterization metrics of the one or more properties calculated with metrology signals from the flexible sparse sampling plan is within a selected threshold from one or more independent characterization metrics of the one or more properties calculated with the full set of metrology signals.
Abstract:
Disclosed are methods and apparatus for qualifying a photolithographic reticle. A reticle inspection tool is used to acquire at least two images at different imaging configurations from each pattern area of the reticle. A reticle pattern is reconstructed based on each at least two images from each pattern area of the reticle. For each reconstructed reticle pattern, a lithographic process with two or more different process conditions is modeled on such reconstructed reticle pattern to generate two or more corresponding modeled test wafer patterns. Each two or more modelled test wafer patterns is analyzed to identify hot spot patterns of the reticle patterns that are susceptible to the different process conditions altering wafer patterns formed with such hot spot patterns.
Abstract:
Methods and systems for detecting defects on a specimen are provided. One system includes a storage medium configured for storing images for a physical version of a specimen generated by an inspection system. At least two dies are formed on the specimen with different values of one or more parameters of a fabrication process performed on the specimen. The system also includes computer subsystem(s) configured for comparing portions of the stored images generated at locations on the specimen at which patterns having the same as-designed characteristics are formed with at least two of the different values. The portions of the stored images that are compared are not constrained by locations of the dies on the specimen, locations of the patterns within the dies, or locations of the patterns on the specimen. The computer subsystem(s) are also configured for detecting defects at the locations based on results of the comparing.
Abstract:
A metrology performance analysis system includes a metrology tool including one or more detectors and a controller communicatively coupled to the one or more detectors. The controller is configured to receive one or more metrology data sets associated with a metrology target from the metrology tool in which the one or more metrology data sets include one or more measured metrology metrics and the one or more measured metrology metrics indicate deviations from nominal values. The controller is further configured to determine relationships between the deviations from the nominal values and one or more selected semiconductor process variations, and determine one or more root causes of the deviations from the nominal values based on the relationships between values of the one or more metrology metrics and the one or more selected semiconductor process variations.
Abstract:
Universal target based inspection drive metrology includes designing a plurality of universal metrology targets measurable with an inspection tool and measurable with a metrology tool, identifying a plurality of inspectable features within at least one die of a wafer using design data, disposing the plurality of universal targets within the at least one die of the wafer, each universal target being disposed at least proximate to one of the identified inspectable features, inspecting a region containing one or more of the universal targets with an inspection tool, identifying one or more anomalistic universal targets in the inspected region with an inspection tool and, responsive to the identification of one or more anomalistic universal targets in the inspected region, performing one or more metrology processes on the one or more anomalistic universal metrology targets with the metrology tool.
Abstract:
The generation of flexible sparse metrology sample plans includes receiving a full set of metrology signals from one or more wafers from a metrology tool, determining a set of wafer properties based on the full set of metrology signals and calculating a wafer property metric associated with the set of wafer properties, calculating one or more independent characterization metrics based on the full set of metrology signals, and generating a flexible sparse sample plan based on the set of wafer properties, the wafer property metric, and the one or more independent characterization metrics. The one or more independent characterization metrics of the one or more properties calculated with metrology signals from the flexible sparse sampling plan is within a selected threshold from one or more independent characterization metrics of the one or more properties calculated with the full set of metrology signals.
Abstract:
Metrology methods are provided, which comprise identifying overlay critical patterns in a device design, the overlay critical patterns having an overlay sensitivity to process variation above a specified threshold that depends on design specifications; and using metrology targets that correspond to the identified overlay critical patterns. Alternatively or complementarily, metrology methods comprise identifying yield critical patterns according to a corresponding process window narrowing due to specified process variation, wherein the narrowing is defined by a dependency of edge placement errors (EPEs) of the patterns on process parameters. Corresponding targets and measurements are provided.