Abstract:
Universal target based inspection drive metrology includes designing a plurality of universal metrology targets measurable with an inspection tool and measurable with a metrology tool, identifying a plurality of inspectable features within at least one die of a wafer using design data, disposing the plurality of universal targets within the at least one die of the wafer, each universal target being disposed at least proximate to one of the identified inspectable features, inspecting a region containing one or more of the universal targets with an inspection tool, identifying one or more anomalistic universal targets in the inspected region with an inspection tool and, responsive to the identification of one or more anomalistic universal targets in the inspected region, performing one or more metrology processes on the one or more anomalistic universal metrology targets with the metrology tool.
Abstract:
Mixed-mode includes receiving inspection results including one or more images of a selected region of the wafer, the one or more images include one or more wafer die including a set of repeating blocks, the set of repeating blocks a set of repeating cells. In addition, mixed-mode inspection includes adjusting a pixel size of the one or more images to map each cell, block and die to an integer number of pixels. Further, mixed-mode inspection includes comparing a first wafer die to a second wafer die to identify an occurrence of one or more defects in the first or second wafer die, comparing a first block to a second block to identify an occurrence of one or more defects in the first or second blocks and comparing a first cell to a second cell to identify an occurrence of one or more defects in the first or second cells.
Abstract:
Methods and systems for detecting anomalies in images of a specimen are provided. One system includes one or more computer subsystems configured for acquiring images generated of a specimen by an imaging subsystem. The computer subsystem(s) are also configured for determining one or more characteristics of the acquired images. In addition, the computer subsystem(s) are configured for identifying anomalies in the images based on the one or more determined characteristics without applying a defect detection algorithm to the images or the one or more characteristics of the images.
Abstract:
Mixed-mode includes receiving inspection results including one or more images of a selected region of the wafer, the one or more images include one or more wafer die including a set of repeating blocks, the set of repeating blocks a set of repeating cells. In addition, mixed-mode inspection includes adjusting a pixel size of the one or more images to map each cell, block and die to an integer number of pixels. Further, mixed-mode inspection includes comparing a first wafer die to a second wafer die to identify an occurrence of one or more defects in the first or second wafer die, comparing a first block to a second block to identify an occurrence of one or more defects in the first or second blocks and comparing a first cell to a second cell to identify an occurrence of one or more defects in the first or second cells.
Abstract:
Mixed-mode includes receiving inspection results including one or more images of a selected region of the wafer, the one or more images include one or more wafer die including a set of repeating blocks, the set of repeating blocks a set of repeating cells. In addition, mixed-mode inspection includes adjusting a pixel size of the one or more images to map each cell, block and die to an integer number of pixels. Further, mixed-mode inspection includes comparing a first wafer die to a second wafer die to identify an occurrence of one or more defects in the first or second wafer die, comparing a first block to a second block to identify an occurrence of one or more defects in the first or second blocks and comparing a first cell to a second cell to identify an occurrence of one or more defects in the first or second cells.
Abstract:
Mixed-mode includes receiving inspection results including one or more images of a selected region of the wafer, the one or more images include one or more wafer die including a set of repeating blocks, the set of repeating blocks a set of repeating cells. In addition, mixed-mode inspection includes adjusting a pixel size of the one or more images to map each cell, block and die to an integer number of pixels. Further, mixed-mode inspection includes comparing a first wafer die to a second wafer die to identify an occurrence of one or more defects in the first or second wafer die, comparing a first block to a second block to identify an occurrence of one or more defects in the first or second blocks and comparing a first cell to a second cell to identify an occurrence of one or more defects in the first or second cells.
Abstract:
Methods and systems for detecting anomalies in images of a specimen are provided. One system includes one or more computer subsystems configured for acquiring images generated of a specimen by an imaging subsystem. The computer subsystem(s) are also configured for determining one or more characteristics of the acquired images. In addition, the computer subsystem(s) are configured for identifying anomalies in the images based on the one or more determined characteristics without applying a defect detection algorithm to the images or the one or more characteristics of the images.
Abstract:
Universal target based inspection drive metrology includes designing a plurality of universal metrology targets measurable with an inspection tool and measurable with a metrology tool, identifying a plurality of inspectable features within at least one die of a wafer using design data, disposing the plurality of universal targets within the at least one die of the wafer, each universal target being disposed at least proximate to one of the identified inspectable features, inspecting a region containing one or more of the universal targets with an inspection tool, identifying one or more anomalistic universal targets in the inspected region with an inspection tool and, responsive to the identification of one or more anomalistic universal targets in the inspected region, performing one or more metrology processes on the one or more anomalistic universal metrology targets with the metrology tool.