Abstract:
Various methods and systems for creating or performing a dynamic sampling scheme for a process during which measurements are performed on wafers are provided. One method for creating a dynamic sampling scheme for a process during which measurements are performed on wafers includes performing the measurements on all of the wafers in at least one lot at all measurement spots on the wafers. The method also includes determining an optimal sampling scheme, an enhanced sampling scheme, a reduced sampling scheme, and thresholds for the dynamic sampling scheme for the process based on results of the measurements. The thresholds correspond to values of the measurements at which the optimal sampling scheme, the enhanced sampling scheme, and the reduced sampling scheme are to be used for the process.
Abstract:
Aspects of the present disclosure describe systems and methods for calibrating a metrology tool by using proportionality factors. The proportionality factors may be obtained by measuring a substrate under different measurement conditions. Then calculating the measured metrology value and one or more quality merits. From this information, proportionality factors may be determined. Thereafter the proportionality factors may be used to quantify the inaccuracy in a metrology measurement. The proportionality factors may also be used to determine an optimize measurement recipe. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
Methods for inspecting a wafer and/or predicting one or more characteristics of a device being formed on a wafer are provided. One method includes acquiring images for multiple die printed on a wafer, each of which is printed by performing a double patterning lithography process on the wafer and which include two or more die printed at nominal values of overlay for the double patterning lithography process and one or more die printed at modulated values of the overlay; comparing the images acquired for the multiple die printed at the nominal values to the images acquired for the multiple die printed at the modulated values; and detecting defects in the multiple die printed at the modulated values based on results of the comparing step.
Abstract:
Methods for inspecting a wafer and/or predicting one or more characteristics of a device being formed on a wafer are provided. One method includes acquiring images for multiple die printed on a wafer, each of which is printed by performing a double patterning lithography process on the wafer and which include two or more die printed at nominal values of overlay for the double patterning lithography process and one or more die printed at modulated values of the overlay; comparing the images acquired for the multiple die printed at the nominal values to the images acquired for the multiple die printed at the modulated values; and detecting defects in the multiple die printed at the modulated values based on results of the comparing step.
Abstract:
Universal target based inspection drive metrology includes designing a plurality of universal metrology targets measurable with an inspection tool and measurable with a metrology tool, identifying a plurality of inspectable features within at least one die of a wafer using design data, disposing the plurality of universal targets within the at least one die of the wafer, each universal target being disposed at least proximate to one of the identified inspectable features, inspecting a region containing one or more of the universal targets with an inspection tool, identifying one or more anomalistic universal targets in the inspected region with an inspection tool and, responsive to the identification of one or more anomalistic universal targets in the inspected region, performing one or more metrology processes on the one or more anomalistic universal metrology targets with the metrology tool.
Abstract:
Aspects of the present disclosure describe systems and methods for calibrating a metrology tool by using proportionality factors. The proportionality factors may be obtained by measuring a substrate under different measurement conditions. Then calculating the measured metrology value and one or more quality merits. From this information, proportionality factors may be determined. Thereafter the proportionality factors may be used to quantify the inaccuracy in a metrology measurement. The proportionality factors may also be used to determine an optimize measurement recipe. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
Various methods and systems for creating or performing a dynamic sampling scheme for a process during which measurements are performed on wafers are provided. One method for creating a dynamic sampling scheme for a process during which measurements are performed on wafers includes performing the measurements on all of the wafers in at least one lot at all measurement spots on the wafers. The method also includes determining an optimal sampling scheme, an enhanced sampling scheme, a reduced sampling scheme, and thresholds for the dynamic sampling scheme for the process based on results of the measurements. The thresholds correspond to values of the measurements at which the optimal sampling scheme, the enhanced sampling scheme, and the reduced sampling scheme are to be used for the process.
Abstract:
Universal target based inspection drive metrology includes designing a plurality of universal metrology targets measurable with an inspection tool and measurable with a metrology tool, identifying a plurality of inspectable features within at least one die of a wafer using design data, disposing the plurality of universal targets within the at least one die of the wafer, each universal target being disposed at least proximate to one of the identified inspectable features, inspecting a region containing one or more of the universal targets with an inspection tool, identifying one or more anomalistic universal targets in the inspected region with an inspection tool and, responsive to the identification of one or more anomalistic universal targets in the inspected region, performing one or more metrology processes on the one or more anomalistic universal metrology targets with the metrology tool.
Abstract:
Inspection guided overlay metrology may include performing a pattern search in order to identify a predetermined pattern on a semiconductor wafer, generating a care area for all instances of the predetermined pattern on the semiconductor wafer, identifying defects within generated care areas by performing an inspection scan of each of the generated care areas, wherein the inspection scan includes a low-threshold or a high sensitivity inspection scan, identifying overlay sites of the predetermined pattern of the semiconductor wafer having a measured overlay error larger than a selected overlay specification utilizing a defect inspection technique, comparing location data of the identified defects of a generated care area to location data of the identified overlay sites within the generated care area in order to identify one or more locations wherein the defects are proximate to the identified overlay sites, and generating a metrology sampling plan based on the identified locations.