Abstract:
The present disclosure relates to a compact external cavity tunable laser apparatus. The laser apparatus includes a substrate, an external cavity tunable reflecting unit that reflects laser light entering from the outside on the substrate and selects and varies a wavelength of the reflected laser light, an optical fiber that outputs the laser light on the substrate; and an highly integrated light source that integrates the laser light input from the external cavity tunable reflecting unit using inclined input and output waveguides, a curved waveguide, and a straight waveguide to output the integrated laser light to the optical fiber in order to match an optical axis formed with the external cavity tunable reflecting unit with an optical axis formed with an optical fiber.
Abstract:
Disclosed is an optical line terminal for monitoring and controlling upstream and downstream optical signals, and more particularly, to an optical line terminal for monitoring and controlling upstream and downstream optical signals, which adds different low frequency monitoring signals to upstream and downstream wavelength division multiplexing optical signals in a bidirectional wavelength division multiplexing (WDM) optical network and senses and detects low frequency components of upstream and downstream optical signals to unite, monitor, and control optical outputs and wavelengths of the upstream and downstream wavelength division multiplexing optical signals into a single system.
Abstract:
Provided are a high-speed superluminescent diode, a method of manufacturing the same, and a wavelength-tunable external cavity laser including the same. The superluminescent diode includes a substrate having an active region and an optical mode size conversion region, waveguides including an ridge waveguide in the active region and a deep ridge waveguide in the optical mode size conversion region connected to the active waveguide, an electrode disposed on the ridge waveguide; planarizing layers disposed on sides of the ridge waveguide and the deep ridge waveguide on the substrate, and a pad electrically connected to the electrode, the pad being disposed on the planarizing layers outside the active waveguide.
Abstract:
Provided are an avalanche photodiode and a method of fabricating the same. The method of fabricating the avalanche photodiode includes sequentially forming a compound semiconductor absorption layer, a compound semiconductor grading layer, a charge sheet layer, a compound semiconductor amplification layer, a selective wet etch layer, and a p-type conductive layer on an n-type substrate through a metal organic chemical vapor deposition process.
Abstract:
A multi-channel optical receiving module includes a first substrate disposed on a bench, optical fibers disposed in grooves of the first substrate, a first lens disposed on the first substrate and collimating optical signals through the optical fibers, a second substrate disposed on the bench at a side of the first substrate, a light receiving device disposed on the second substrate, a second lens disposed over the light receiving device, a mirror reflecting the optical signals between the first lens and the second lens, and a block fixing the mirror. The block includes through-holes transmitting the optical signals between the first and second lenses without refraction of the optical signals.
Abstract:
An optical signal generating apparatus according to an embodiment of the inventive concept includes a first optical intensity modulator for modulating a first optical signal to generate a 2N-level (where N is a positive integer) second optical signal in the form of a binary signal, a first optical amplifier for amplifying the second optical signal to generate a third optical signal, and a second optical intensity modulator for modulating the third optical signal to generate a 2N+1-level fourth optical signal in the form of a binary signal. The optical signal generating apparatus according to an embodiment of the inventive concept may generate a low-cost, high-quality optical signal by using an optical device to generate a multi-level optical signal. Additionally, the optical signal generating apparatus according to an embodiment of the inventive concept may generate a multi-level optical signal by sequentially performing optical modulation and optical amplification operations.
Abstract:
Disclosed are a hybrid integrated optical device capable of more easily implementing impedance matching of a transmission line by using a polymer material on which a low-temperature process may be performed when an optical waveguide platform is fabricated, and a fabrication method thereof. The hybrid integrated optical device according to an exemplary embodiment of the present disclosure includes: a substrate divided into a waveguide region and a line region; a lower clad layer formed of silica and formed on the substrate; a transmission line part formed on the lower clad layer of the line region; and a height adjustment layer, a core layer, and an upper clad layer formed of a polymer and sequentially formed on the lower clad layer of the waveguide region, in which an optical waveguide is formed on the core layer.
Abstract:
Provided is a quarter-wavelength shifted distributed feedback laser diode. The laser diode includes a substrate having a laser diode section and a phase adjustment section, a waveguide layer on the substrate, a clad layer on the waveguide layer, a grating disposed in the clad layer in the laser diode section, an anti-reflection coating disposed on one side walls, of the substrate, the waveguide layer, and the clad layer, adjacent to the laser diode section, and a high reflection coating disposed on the other side walls, of the substrate, the waveguide layer, and the clad layer, adjacent to the phase adjustment section.
Abstract:
Provided is a tunable semiconductor laser including an active gain region in which an optical signal is generated according to a modulation signal, a mode control region in which a resonant mode is controlled according to a mode control signal, and a signal chirp of the optical signal is compensated according to a first compensation signal determined based on the modulation signal, and a distributed Bragg reflector (DBR) region in which an oscillation wavelength of the optical signal is determined based on a wavelength selection signal for the optical signal, a second compensation signal for compensating for a thermal chirp of the optical signal on a basis of the modulation signal, and a heater signal provided to a heater electrode.
Abstract:
Provided is a reflective colorless optical transmitter receiving a carrier signal, which is a continuous wave, and outputting a modulated optical signal. The reflective colorless optical transmitter includes a semiconductor optical amplifier (SOA) amplifying an input optical signal allowing the input optical signal to have a gain, an optical modulator connected to the SOA and outputting a modulated optical signal, a high reflectivity facet reflecting the modulated optical signal from the optical modulator, and a Bragg reflection mirror connected to the high reflectivity facet, the optical modulator, and the SOA in series, wherein a Bragg resonator is formed by the Bragg reflecting mirror and the high reflectivity facet.