Abstract:
Exemplary embodiments include a system having a first wireless audio output device and a second wireless audio output device. One of the first or second audio output devices is configured to one of connect as a slave to a source device in a first piconet and connect as a master to the other one of the first or second audio output devices in a second piconet. The one of the first or second wireless audio output devices determines whether an audio packet transmitted by the source device via the first piconet was received by the first wireless audio output device and the second wireless audio output device, and, when at least one of the first wireless audio output device or the second wireless audio output device did not receive the audio packet, the audio packet is exchanged between the first and second wireless audio output devices via the second piconet.
Abstract:
Acoustic touch detection (touch sensing) system architectures and methods can be used to detect an object touching a surface. Position of an object touching a surface can be determined using time-of-flight (TOF) bounding box techniques, or acoustic image reconstruction techniques, for example. Acoustic touch sensing can utilize transducers, such as piezoelectric transducers, to transmit ultrasonic waves along a surface and/or through the thickness of an electronic device. Location of the object can be determined, for example, based on the amount of time elapsing between the transmission of the wave and the detection of the reflected wave. An object in contact with the surface can interact with the transmitted wave causing attenuation, redirection and/or reflection of at least a portion of the transmitted wave. Portions of the transmitted wave energy after interaction with the object can be measured to determine the touch location of the object on the surface of the device.
Abstract:
To establish a connection between electronic devices some embodiments include a system, method, and/or computer program product for password pairing user-interface devices in wireless proximity. A first electronic device (e.g., a keyboard) transmits an advertising packet, and receives a password, where the password has been generated by a second electronic device (e.g., a smartphone) and the password enables pairing between the first electronic device and the second electronic device. The first electronic device transmits a message including the password to the second electronic device, where the second electronic device is within a predefined range of the first electronic device. In some embodiments the first device receives a command from the second electronic device to transition to a discovery mode, transitions to the discovery mode, and transmits a confirmation to the second electronic device that the first device is in the discovery mode.
Abstract:
Exemplary embodiments include a method performed by a wireless device configured as a slave in a first piconet and configured as a master in a second piconet. The method includes determining whether the wireless device has data to transmit over the second piconet to an other wireless device, determining an availability of a full slot in a first piconet schedule, selecting a data transmission scheme based on the availability of the full slot in the first piconet schedule and transmitting the data via the second piconet to the other wireless device in accordance with the selected data transmission scheme.
Abstract:
An input device, such as a stylus, can include a main body comprising a main body connector for connecting to a charger to charge a power source of the stylus. A separate functional end module is removable from the main body to expose the main body connector. The functional end module includes a functional component and a module connector that communicates with the main body via the main body connector. Various different functional end modules can be interchangeable to provide a variety of distinct features to the stylus.
Abstract:
Exemplary embodiments include a system having a first wireless audio output device and a second wireless audio output device. One of the first or second audio output devices is configured to one of connect as a slave to a source device in a first piconet and connect as a master to the other one of the first or second audio output devices in a second piconet. The one of the first or second wireless audio output devices determines whether an audio packet transmitted by the source device via the first piconet was received by the first wireless audio output device and the second wireless audio output device, and, when at least one of the first wireless audio output device or the second wireless audio output device did not receive the audio packet, the audio packet is exchanged between the first and second wireless audio output devices via the second piconet.
Abstract:
A device and method selects an antenna configuration. The method performed at a user equipment includes determining at least one communication functionality that is being used, each communication functionality configured to utilize at least one antenna in a multi-antenna arrangement of the user equipment. The method includes receiving a first indication of whether a cellular communication functionality is being used, the cellular communication functionality configured to utilize at least one antenna in the multi-antenna arrangement. The method includes receiving a second indication of whether a coexistence condition is present. The method includes determining an antenna configuration for the multi-antenna arrangement to be used by the determined communication functionality based upon the determined communication functionality, the first indication, and the second indication. The method includes configuring the multi-antenna arrangement for the determined communication functionality based upon the antenna configuration.
Abstract:
This application relates to systems, methods, and apparatus for testing operability of a mobile device with a reader device. In some embodiments, a testing system is set forth for automatically placing the mobile device proximate to the reader device in order to initiate a wireless transaction between the mobile device and the reader device. Depending on whether the mobile device is determined to be operable with the reader device, the testing system can automatically place the mobile device proximate to another reader device for testing. In this way, reductions in testing time can be manifested as a result of automating the testing process.
Abstract:
In order to improve communication with another electronic device, during an advertising mode an electronic device (such as a smartphone) may transmit a packet with advertising information using a default transmit power level. Then, based on feedback about a performance metric associated with the communication from the other electronic device, the electronic device may selectively increase the transmit power level for a subsequent packet. Because this selective increase in the transmit power level may increase the overall power consumption, the change in the transmit power level also may depend on one or more factors, such as a battery power level of the electronic device. However, the selective increase in the transmit power level may, in some instances, decrease the overall power consumption by reducing or eliminating retries.
Abstract:
A method and apparatus to improve the robustness of a wireless communication link between a base station and a mobile communication device. The method increases power selectively on portions of an uplink communication signal transmitted from the mobile communication device to the base station. The method monitors a quality metric value at the mobile communication device and sets the transmit power level of the first portion of an uplink communication signal to the first power level, if the monitored quality metric value is in a first range of quality values, or sets the transmit power level of the first portion of the uplink communication signal to a second power level, if the monitored quality metric value is in a second range of quality values. The first portion of the uplink communication signal includes control signals used by a base station to maintain connection of the wireless communication link.