Abstract:
In order to improve communication with another electronic device, during an advertising mode an electronic device (such as a smartphone) may transmit a packet with advertising information using a default transmit power level. Then, based on feedback about a performance metric associated with the communication from the other electronic device, the electronic device may selectively increase the transmit power level for a subsequent packet. Because this selective increase in the transmit power level may increase the overall power consumption, the change in the transmit power level also may depend on one or more factors, such as a battery power level of the electronic device. However, the selective increase in the transmit power level may, in some instances, decrease the overall power consumption by reducing or eliminating retries.
Abstract:
A secure ranging system can use a secure processing system to deliver one or more ranging keys to a ranging radio on a device, and the ranging radio can derive locally at the system ranging codes based on the ranging keys. A deterministic random number generator can derive the ranging codes using the ranging key and one or more session parameters, and each device (e.g. a cellular telephone and another device) can independently derive the ranging codes and derive them contemporaneously with their use in ranging operations.
Abstract:
A secure ranging system can use a secure processing system to deliver one or more ranging keys to a ranging radio on a device, and the ranging radio can derive locally at the system ranging codes based on the ranging keys. A deterministic random number generator can derive the ranging codes using the ranging key and one or more session parameters, and each device (e.g. a cellular telephone and another device) can independently derive the ranging codes and derive them contemporaneously with their use in ranging operations.
Abstract:
A secure ranging system can use a secure processing system to deliver one or more ranging keys to a ranging radio on a device, and the ranging radio can derive locally at the system ranging codes based on the ranging keys. A deterministic random number generator can derive the ranging codes using the ranging key and one or more session parameters, and each device (e.g. a cellular telephone and another device) can independently derive the ranging codes and derive them contemporaneously with their use in ranging operations.
Abstract:
To establish a connection between electronic devices some embodiments include a system, method, and/or computer program product for password pairing user-interface devices in wireless proximity. A first electronic device (e.g., a keyboard) transmits an advertising packet, and receives a password, where the password has been generated by a second electronic device (e.g., a smartphone) and the password enables pairing between the first electronic device and the second electronic device. The first electronic device transmits a message including the password to the second electronic device, where the second electronic device is within a predefined range of the first electronic device. In some embodiments the first device receives a command from the second electronic device to transition to a discovery mode, transitions to the discovery mode, and transmits a confirmation to the second electronic device that the first device is in the discovery mode.
Abstract:
A secure ranging system can use a secure processing system to deliver one or more ranging keys to a ranging radio on a device, and the ranging radio can derive locally at the system ranging codes based on the ranging keys. A deterministic random number generator can derive the ranging codes using the ranging key and one or more session parameters, and each device (e.g. a cellular telephone and another device) can independently derive the ranging codes and derive them contemporaneously with their use in ranging operations.