摘要:
A transistor device includes a heterostructure body having a source, a drain spaced apart from the source and a two-dimensional charge carrier gas channel between the source and the drain. The transistor device further includes a piezoelectric gate on the heterostructure body. The piezoelectric gate is operable to control the channel below the piezoelectric gate by increasing or decreasing a force applied to the heterostructure body responsive to a voltage applied to the piezoelectric gate.
摘要:
A semiconductor device includes a first contact in low Ohmic contact with a source region of the device and a first portion of a body region of the device formed in an active area of the device, and a second contact in low Ohmic contact with a second portion of the body region formed in a peripheral area of the device. The minimum width of the second contact at a first surface of the device is larger than the minimum width of the first contact at the first surface so that maximum current density during commutating the semiconductor device is reduced and thus the risk of device damage during hard commutating is also reduced.
摘要:
A semiconductor arrangement includes a MOSFET having a source region, a drift region and a drain region of a first conductivity type, a body region of a second conductivity type arranged between the source region and the drift region, a gate electrode arranged adjacent the body region and dielectrically insulated from the body region by a gate dielectric, and a source electrode contacting the source region and the body region. The semiconductor arrangement further includes a normally-off JFET having a channel region of the first conductivity type that is coupled between the source electrode and the drift region and extends adjacent the body region so that a p-n junction is formed between the body region and the channel region.
摘要:
In a semiconductor die, source zones of a first conductivity type and body zones of a second conductivity type are formed. Both the source and the body zones adjoin a first surface of the semiconductor die in first sections. An impurity source is provided in contact with the first sections of the first surface. The impurity source is tempered so that atoms of a metallic recombination element diffuse out from the impurity source into the semiconductor die. Then impurities of the second conductivity type are introduced into the semiconductor die to form body contact zones between two neighboring source zones, respectively. The atoms of the metallic recombination element reduce the reverse recovery charge in the semiconductor die. Providing the body contact zones after tempering the platinum source provides uniform and reliable body contacts.
摘要:
A bipolar semiconductor component, in particular a diode, comprising an anode structure which controls its emitter efficiency in a manner dependent on the current density in such a way that the emitter efficiency is low at small current densities and sufficiently high at large current densities, and an optional cathode structure, which can inject additional holes during commutation, and production methods therefor.
摘要:
A semiconductor component is disclosed. One embodiment includes a semiconductor body including a first semiconductor layer having at least one active component zone, a cell array with a plurality of trenches, and at least one cell array edge zone. The cell array edge zone is only arranged in an edge region of the cell array, adjoining at least one trench of the cell array, and being at least partially arranged below the at least one trench in the cell array.
摘要:
A semiconductor device as described herein includes a silicon carbide semiconductor body. A trench extends into the silicon carbide semiconductor body at a first surface. A gate dielectric and a gate electrode are formed within the trench. A body zone of a first conductivity type adjoins to a sidewall of the trench, the body zone being electrically coupled to a contact via a body contact zone including a higher maximum concentration of dopants than the body zone. An extension zone of the first conductivity type is electrically coupled to the contact via the body zone, wherein a maximum concentration of dopants of the extension zone along a vertical direction perpendicular to the first surface is higher than the maximum concentration of dopants of the body zone along the vertical direction. A distance between the first surface and a bottom side of the extension zone is larger than the distance between the first surface and the bottom side of the trench.
摘要:
A method for producing a buried n-doped semiconductor zone in a semiconductor body. In one embodiment, the method includes producing an oxygen concentration at least in the region to be doped in the semiconductor body. The semiconductor body is irradiated via one side with nondoping particles for producing defects in the region to be doped. A thermal process is carried out. The invention additionally relates to a semiconductor component with a field stop zone.
摘要:
Source zones of a first conductivity type and body zones of a second conductivity type are formed in a semiconductor die. The source zones directly adjoin a first surface of the semiconductor die. A dielectric layer adjoins the first surface. Polysilicon plugs extend through the dielectric layer and are electrically connected to the source and the body zones. An impurity source containing at least one metallic recombination element is provided in contact with deposited polycrystalline silicon material forming the polysilicon plugs and distant to the semiconductor die. Atoms of the metallic recombination element, for example platinum atoms, may be diffused out from the impurity source into the semiconductor die to reliably reduce the reverse recovery charge.
摘要:
A field-effect semiconductor device is provided. The field-effect semiconductor device includes a semiconductor body with a first surface defining a vertical direction. In a vertical cross-section the field-effect semiconductor device further includes a vertical trench extending from the first surface into the semiconductor body. The vertical trench includes a field electrode, a cavity at least partly surrounded by the field electrode, and an insulation structure substantially surrounding at least the field electrode. Further, a method for producing a field-effect semiconductor device is provided.