-
公开(公告)号:CN112987058B
公开(公告)日:2021-08-13
申请号:CN202110550939.5
申请日:2021-05-20
Applicant: 长江空间信息技术工程有限公司(武汉) , 中国三峡建设管理有限公司 , 武汉大学
Abstract: 本发明公开了一种利用地表气象站增强短距离大高差RTK定位的方法。它包括如下步骤,步骤一:在短距离大高差环境,布设多个地表气象观测站;步骤二:汇集区域内所有的地表气象观测站的地表气象观测值,进行对流层延迟建模,建立各气象参数高程归算模型;步骤三:计算基准站和流动站处的对流层延迟;步骤四:计算双差对流层延迟;步骤五:将计算得到的双差对流层延迟代入RTK观测方程,进而进行RTK定位。本发明克服了现有技术在短距离大高差环境下,由于对流层延迟差异过大,导致二次差分以后、残余对流层延迟较大的缺点;具有对流层延迟的表达精确,RTK垂直方向定位精度高的优点。
-
公开(公告)号:CN112099069B
公开(公告)日:2023-12-22
申请号:CN202010892977.4
申请日:2020-08-31
Applicant: 中国三峡建设管理有限公司 , 武汉大学 , 长江空间信息技术工程有限公司(武汉)
Inventor: 姚宜斌 , 於三大 , 杨爱明 , 张良 , 马能武 , 权录年 , 张辛 , 伍中华 , 肖玉钢 , 张锋 , 马瑞 , 许超钤 , 张琦 , 胡明贤 , 义崇政 , 李星 , 袁乐先 , 张燊
Abstract: 本发明公开了一种实测气象参数修正对流层经验模型的RTK算法。它包括如下步骤,步骤一:将基准站的观测值及其实测气象元素实时存储;步骤二:选择全球对流层经验模型,计算天顶对流层延迟;步骤三:建立高程、基于全球经验模型ZTD、基于实测气象元素ZTD之间关系;步骤四:利用修正模型修正基准站和流动站全球经验模型ZTD,将两者求差的得到基准站观测值改正量;步骤五:利用基准站观测值改正量改正基准站观测值,将经过改正后的基准观测值播发给流动站,流动站进行双差RTK解算出自身的三维坐标。本发明具有提高RTK服务定位精度和可靠性的优点。本发明还公开了适用于特殊环境的连续运行基准站服务系统。
-
公开(公告)号:CN113009531A
公开(公告)日:2021-06-22
申请号:CN202110198298.1
申请日:2021-02-22
Applicant: 中国三峡建设管理有限公司 , 武汉大学 , 长江空间信息技术工程有限公司(武汉)
Abstract: 本发明公开了一种小尺度高精度的低空对流层大气折射率模型。它利用研究区域内的GNSS观测数据及配置的气象产品作为输入值,然后将研究区域低对流层划分若干个独立的三维网格;并假设每个独立网格内的大气折射率是均匀不变的,将两个测站间的斜路径对流层延迟值表示为单位网格内的大气折射率与斜路径长度的乘积;通过附加水平约束、垂直约束及先验值约束观测方程,得到最终的层析观测模型。本发明克服了现有技术对流层经验模型已经不能满足精密定位的需求的缺点;具有能实时测量层析网格内的大气折射率,测量精度较高的优点。
-
公开(公告)号:CN112987058A
公开(公告)日:2021-06-18
申请号:CN202110550939.5
申请日:2021-05-20
Applicant: 长江空间信息技术工程有限公司(武汉) , 中国三峡建设管理有限公司 , 武汉大学
Abstract: 本发明公开了一种利用地表气象站增强短距离大高差RTK定位的方法。它包括如下步骤,步骤一:在短距离大高差环境,布设多个地表气象观测站;步骤二:汇集区域内所有的地表气象观测站的地表气象观测值,进行对流层延迟建模,建立各气象参数高程归算模型;步骤三:计算基准站和流动站处的对流层延迟;步骤四:计算双差对流层延迟;步骤五:将计算得到的双差对流层延迟代入RTK观测方程,进而进行RTK定位。本发明克服了现有技术在短距离大高差环境下,由于对流层延迟差异过大,导致二次差分以后、残余对流层延迟较大的缺点;具有对流层延迟的表达精确,RTK垂直方向定位精度高的优点。
-
公开(公告)号:CN112099069A
公开(公告)日:2020-12-18
申请号:CN202010892977.4
申请日:2020-08-31
Applicant: 中国三峡建设管理有限公司 , 武汉大学 , 长江空间信息技术工程有限公司(武汉)
Inventor: 姚宜斌 , 於三大 , 杨爱明 , 张良 , 马能武 , 权录年 , 张辛 , 伍中华 , 肖玉钢 , 张锋 , 马瑞 , 许超钤 , 张琦 , 胡明贤 , 义崇政 , 李星 , 袁乐先 , 张燊
Abstract: 本发明公开了一种实测气象参数修正对流层经验模型的RTK算法。它包括如下步骤,步骤一:将基准站的观测值及其实测气象元素实时存储;步骤二:选择全球对流层经验模型,计算天顶对流层延迟;步骤三:建立高程、基于全球经验模型ZTD、基于实测气象元素ZTD之间关系;步骤四:利用修正模型修正基准站和流动站全球经验模型ZTD,将两者求差的得到基准站观测值改正量;步骤五:利用基准站观测值改正量改正基准站观测值,将经过改正后的基准观测值播发给流动站,流动站进行双差RTK解算出自身的三维坐标。本发明具有提高RTK服务定位精度和可靠性的优点。本发明还公开了适用于特殊环境的连续运行基准站服务系统。
-
公开(公告)号:CN116123982A
公开(公告)日:2023-05-16
申请号:CN202211615171.6
申请日:2022-12-15
Applicant: 国家能源集团江西电力有限公司万安水力发电厂 , 长江空间信息技术工程有限公司(武汉) , 长江勘测规划设计研究有限责任公司
Abstract: 本发明公开了一种基于GNSS的大坝垂直位移监测基准网自动化观测方法。它包括如下步骤,步骤一:点位勘选、仪器及观测墩选型;步骤二:GNSS数据预处理与方案优化;在GNSS垂直位移自动化监测中,确定最优观测时段,修复频繁小周跳;步骤三:基线解算与网平差方法;在GNSS垂直位移自动化监测中,将对流层延迟改正、热膨胀效应改正这些模型应用于基线解算中,在网平差中引入先验高差信息,提升基线解的精度和可靠性。本发明具有能提高GNSS基线的垂直方向解算精度的优点。本发明还公开了基于GNSS的大坝垂直位移监测基准网自动化观测平台。
-
公开(公告)号:CN115096266A
公开(公告)日:2022-09-23
申请号:CN202210653494.8
申请日:2022-06-09
Applicant: 长江空间信息技术工程有限公司(武汉)
Abstract: 本发明公开了一种高精度地下管线明显点定位测绘装置。它包括影像采集模块、GNSS定位模块、主控模块和集成移动装置;影像采集模块、GNSS定位模块和主控模块均位于集成移动装置上;主控模块包括电源模块、同步控制模块和数据存储模块;电源模块分别与影像采集模块、GNSS定位模块连接;数据存储模块分别与影像采集模块、GNSS定位模块连接;集成移动装置包括移动安装板和连接支撑部件;影像采集模块安装在连接支撑部件下端;GNSS定位模块安装在连接支撑部件上。本发明具有简便、快捷,提高明显点测量的效率,降低成本和安全风险的优点。本发明还公开了高精度地下管线明显点定位测绘装置的定位测绘方法。
-
公开(公告)号:CN113779817B
公开(公告)日:2022-03-11
申请号:CN202111333451.3
申请日:2021-11-11
Applicant: 长江空间信息技术工程有限公司(武汉) , 长江勘测规划设计研究有限责任公司
IPC: G06F30/20
Abstract: 本发明公开了一种测量控制网基准稳定性分析方法。它包括如下步骤,步骤一:统计基线较差;步骤二:计算较差标称中误差;步骤三:计算基线标准化较差;步骤四:构造检验统计量;步骤五:假设检验,判断测站稳定性;步骤六:结合网型,确定平差起算基准;分析测量控制网网形,从上述步骤得到的稳定测站中选取2‑4个测站为起算基准,进行后续平差处理。本发明克服了基于相对测量的工程控制网建设方法中现有起算基准稳定性分析方法严重依赖经验和先验信息、偶然性强、理论不严密、成果不可靠、易导致分析结论错误等问题;具有理论严密、适应性广、操作性强、可靠性高的优点。
-
公开(公告)号:CN111965669B
公开(公告)日:2021-09-03
申请号:CN202010816037.7
申请日:2020-08-14
Applicant: 长江空间信息技术工程有限公司(武汉) , 长江勘测规划设计研究有限责任公司
Abstract: 本发明公开了一种GNSS时间序列中观测墩热膨胀信号的分离方法。它包括如下步骤,步骤一:在待研究GNSS基准站附近选取对照站;步骤二:计算得到短基线解时间序列;步骤三:计算时间序列中低频信号的振幅、相位,将低频热膨胀信号有效分离,并从序列中扣除;步骤四:采用SSAM方法将时间序列分解为不同周期的时变高频信号分量;步骤五:通过ω相关性检验,确定显著信号分量阶数,并组合、重构时间序列,将高频观测墩热膨胀信号从其他低频信号、噪声中有效分离。本发明具有能从GNSS时间序列中提取出更真实、精确的观测墩热膨胀信号的优点,基于此能计算更加准确、可靠的GNSS基准站三维速度场及其不确定度。
-
公开(公告)号:CN110082797A
公开(公告)日:2019-08-02
申请号:CN201910376897.0
申请日:2019-05-07
Applicant: 长江空间信息技术工程有限公司(武汉) , 长江勘测规划设计研究有限责任公司
Abstract: 本发明公开了一种多系统GNSS数据静态后处理高维模糊度固定方法,它包括以下步骤:步骤1:根据多系统GNSS数据处理过程中得到的模糊度浮点解估值及其方差-协方差矩阵选择模糊度固定算法;步骤2:当采用决策函数法,则直接进行模糊度固定;当采用改进的LAMBDA方法,则首先对模糊度浮点解估值及其方差-协方差矩阵按系统分类;之后根据分类的模糊度浮点解估值及其方差-协方差矩阵分别按LAMBDA算法进行单系统模糊度固定;步骤3:根据模糊度固定结果,回代原观测方程,计算待估参数的模糊度固定解。本发明解决了现有模糊度固定方法在多系统GNSS数据处理高维模糊度固定中有效性受限的问题,具有模型简单、易于实现、扩展性强、效率高、精度好等特点。
-
-
-
-
-
-
-
-
-