-
公开(公告)号:CN112987058B
公开(公告)日:2021-08-13
申请号:CN202110550939.5
申请日:2021-05-20
Applicant: 长江空间信息技术工程有限公司(武汉) , 中国三峡建设管理有限公司 , 武汉大学
Abstract: 本发明公开了一种利用地表气象站增强短距离大高差RTK定位的方法。它包括如下步骤,步骤一:在短距离大高差环境,布设多个地表气象观测站;步骤二:汇集区域内所有的地表气象观测站的地表气象观测值,进行对流层延迟建模,建立各气象参数高程归算模型;步骤三:计算基准站和流动站处的对流层延迟;步骤四:计算双差对流层延迟;步骤五:将计算得到的双差对流层延迟代入RTK观测方程,进而进行RTK定位。本发明克服了现有技术在短距离大高差环境下,由于对流层延迟差异过大,导致二次差分以后、残余对流层延迟较大的缺点;具有对流层延迟的表达精确,RTK垂直方向定位精度高的优点。
-
公开(公告)号:CN112099069B
公开(公告)日:2023-12-22
申请号:CN202010892977.4
申请日:2020-08-31
Applicant: 中国三峡建设管理有限公司 , 武汉大学 , 长江空间信息技术工程有限公司(武汉)
Inventor: 姚宜斌 , 於三大 , 杨爱明 , 张良 , 马能武 , 权录年 , 张辛 , 伍中华 , 肖玉钢 , 张锋 , 马瑞 , 许超钤 , 张琦 , 胡明贤 , 义崇政 , 李星 , 袁乐先 , 张燊
Abstract: 本发明公开了一种实测气象参数修正对流层经验模型的RTK算法。它包括如下步骤,步骤一:将基准站的观测值及其实测气象元素实时存储;步骤二:选择全球对流层经验模型,计算天顶对流层延迟;步骤三:建立高程、基于全球经验模型ZTD、基于实测气象元素ZTD之间关系;步骤四:利用修正模型修正基准站和流动站全球经验模型ZTD,将两者求差的得到基准站观测值改正量;步骤五:利用基准站观测值改正量改正基准站观测值,将经过改正后的基准观测值播发给流动站,流动站进行双差RTK解算出自身的三维坐标。本发明具有提高RTK服务定位精度和可靠性的优点。本发明还公开了适用于特殊环境的连续运行基准站服务系统。
-
公开(公告)号:CN113009531A
公开(公告)日:2021-06-22
申请号:CN202110198298.1
申请日:2021-02-22
Applicant: 中国三峡建设管理有限公司 , 武汉大学 , 长江空间信息技术工程有限公司(武汉)
Abstract: 本发明公开了一种小尺度高精度的低空对流层大气折射率模型。它利用研究区域内的GNSS观测数据及配置的气象产品作为输入值,然后将研究区域低对流层划分若干个独立的三维网格;并假设每个独立网格内的大气折射率是均匀不变的,将两个测站间的斜路径对流层延迟值表示为单位网格内的大气折射率与斜路径长度的乘积;通过附加水平约束、垂直约束及先验值约束观测方程,得到最终的层析观测模型。本发明克服了现有技术对流层经验模型已经不能满足精密定位的需求的缺点;具有能实时测量层析网格内的大气折射率,测量精度较高的优点。
-
公开(公告)号:CN112099069A
公开(公告)日:2020-12-18
申请号:CN202010892977.4
申请日:2020-08-31
Applicant: 中国三峡建设管理有限公司 , 武汉大学 , 长江空间信息技术工程有限公司(武汉)
Inventor: 姚宜斌 , 於三大 , 杨爱明 , 张良 , 马能武 , 权录年 , 张辛 , 伍中华 , 肖玉钢 , 张锋 , 马瑞 , 许超钤 , 张琦 , 胡明贤 , 义崇政 , 李星 , 袁乐先 , 张燊
Abstract: 本发明公开了一种实测气象参数修正对流层经验模型的RTK算法。它包括如下步骤,步骤一:将基准站的观测值及其实测气象元素实时存储;步骤二:选择全球对流层经验模型,计算天顶对流层延迟;步骤三:建立高程、基于全球经验模型ZTD、基于实测气象元素ZTD之间关系;步骤四:利用修正模型修正基准站和流动站全球经验模型ZTD,将两者求差的得到基准站观测值改正量;步骤五:利用基准站观测值改正量改正基准站观测值,将经过改正后的基准观测值播发给流动站,流动站进行双差RTK解算出自身的三维坐标。本发明具有提高RTK服务定位精度和可靠性的优点。本发明还公开了适用于特殊环境的连续运行基准站服务系统。
-
公开(公告)号:CN112987058A
公开(公告)日:2021-06-18
申请号:CN202110550939.5
申请日:2021-05-20
Applicant: 长江空间信息技术工程有限公司(武汉) , 中国三峡建设管理有限公司 , 武汉大学
Abstract: 本发明公开了一种利用地表气象站增强短距离大高差RTK定位的方法。它包括如下步骤,步骤一:在短距离大高差环境,布设多个地表气象观测站;步骤二:汇集区域内所有的地表气象观测站的地表气象观测值,进行对流层延迟建模,建立各气象参数高程归算模型;步骤三:计算基准站和流动站处的对流层延迟;步骤四:计算双差对流层延迟;步骤五:将计算得到的双差对流层延迟代入RTK观测方程,进而进行RTK定位。本发明克服了现有技术在短距离大高差环境下,由于对流层延迟差异过大,导致二次差分以后、残余对流层延迟较大的缺点;具有对流层延迟的表达精确,RTK垂直方向定位精度高的优点。
-
公开(公告)号:CN115576030A
公开(公告)日:2023-01-06
申请号:CN202211150929.3
申请日:2022-09-21
Applicant: 长江空间信息技术工程有限公司(武汉) , 中国三峡建工(集团)有限公司
Abstract: 本发明公开了一种基于气象模型的精细化测距边气象改正方法。它包括如下步骤,步骤一:安装气象站,获取气象观测值;步骤二:确定气象模型精度指标;步骤三:建立气象模型;步骤四:利用站点和测点坐标确定测距边电磁波传播路径,计算经过这两点的直线方程;步骤五:内插获取电磁波传播路径上的气象参数,分段进行气象改正,将每段气象改正值求和获取测距边气象改正值。本发明克服了现有技术进行气象改正可能存在一定误差的缺陷;具有提高气象改正精度,满足高精度监测成果的优点。
-
公开(公告)号:CN217631534U
公开(公告)日:2022-10-21
申请号:CN202221450321.8
申请日:2022-06-10
Applicant: 长江空间信息技术工程有限公司(武汉) , 南水北调中线水源有限责任公司
Abstract: 本实用新型公开了一种智能一体化超站仪测站整体结构。它包括电缆仓、设备仓、仪器仓、监测机器人、圆锥形顶棚和GPS天线结构,电缆仓、设备仓、仪器仓、圆锥形顶棚由下至上依次设置;第一设备承重平台设置在电缆仓与设备仓之间;第二设备承重平台设置在设备仓上端;监测机器人安装在第二设备承重平台上;混凝土立柱下端位于电缆仓内,上端依次向上穿过第一设备承重平台、设备仓、第二设备承重平台;钢立柱上端向上穿过仪器仓、伸出圆锥形顶棚;GPS天线结构安装在钢立柱上端。本实用新型具有既满足智能一体化测站的各种功能需求,又美观且适合工程现场实际情况的优点。
-
-
-
-
-
-