-
公开(公告)号:CN116222418A
公开(公告)日:2023-06-06
申请号:CN202211658791.8
申请日:2022-12-22
Applicant: 北京空间机电研究所
IPC: G01B11/24 , G01B11/255 , G01B9/02
Abstract: 本发明公开了一种离轴非球面反射镜离焦量的高精度检测方法,包括:利用激光跟踪仪的测量结果,确定初始参数信息;搭建检测光路;计算得到在检测光路下激光跟踪仪靶球A与计算全息片A面中心的距离;对待加工离轴非球面反射镜进行加工;在每次加工后,进行加工过程中的面形检测,得到每次加工后的离轴非球面反射镜的面形误差;当面形误差满足设定阈值时,进行面形终检,得到最终加工面形对应的实际顶点曲率半径。本发明在全息计算干涉检测的基础上利用激光跟踪仪,解决了离轴非球面反射镜面形精度和离焦量的快速同步高精度测量问题,在加工过程中严格限定离轴非球面反射镜在检测光路中的位置,提供包含准确几何参数误差的面形误差指导加工。
-
公开(公告)号:CN111076899B
公开(公告)日:2021-11-16
申请号:CN201911269722.6
申请日:2019-12-11
Applicant: 北京空间机电研究所
Abstract: 本发明涉及一种高精度大口径非球面竖直面形检测自动调整方法,属于先进光学制造与检测领域;步骤一、通过激光跟踪仪拟合零位补偿器的中心基准轴线;步骤二、搭建非球面竖直检测系统;步骤三、在待测反射镜的顶部侧壁处粘贴6‑8个靶球;通过激光跟踪仪拟合待测反射镜的环口基准面;步骤四、在待测反射镜的侧壁粘贴8‑10个靶球;通过激光跟踪仪拟合待测反射镜的机械轴线;步骤五、确定投影轴线O′M;步骤六、通过调整台调整待测反射镜,实现机械轴线与投影轴线O′M重合,完成调整;本发明实现精确调整非球面检测光路中各个光学元件空间位置,具有调整精度高的特点,十分适用于米级口径以上的大口径非球面反射镜加工检测。
-
公开(公告)号:CN106705888B
公开(公告)日:2019-04-09
申请号:CN201611105616.0
申请日:2016-12-05
Applicant: 北京空间机电研究所
IPC: G01B11/25
Abstract: 本发明提出一种干涉检测中的CCD坐标系与镜面坐标系非线性关系标定方法,所利用的的非线性标定系统主要由激光干涉仪、补偿器、待测反射镜及其调整机构、柔性标定靶带组成。标定时,柔性标定靶带粘贴在待测反射镜镜面上。通过测量及数据处理,可获取待测反射镜的镜面坐标系与激光干涉仪CCD坐标系之间的非线性关系方程。根据非线性关系方程,可对实际测量的面形误差分布进行非线性矫正。本发明不但可以用于指导大口径、大曲率反射镜加工中的精确检测;还可以用于光学系统全链路仿真中,镜面坐标系与系统仿真模型的笛卡尔坐标系之间的非线性矫正和补偿。
-
公开(公告)号:CN115480598B
公开(公告)日:2023-09-29
申请号:CN202210977493.9
申请日:2022-08-15
Applicant: 北京空间机电研究所
Abstract: 一种离子束加工过程中光学镜面温度控制方法及测控系统,属于高精度非球面光学制造领域。其中,此控制方法包括基于点热源在物体内的能量沉积理论,建立面热源能量沉积模型;根据面热源能量沉积模型,依次对光学零件镜面能量沉积过程进行静态分析及动态分析,优化离子源工艺参数;通过对光学加工过程的离散化设计或对循环的加工路径稀疏化处理,降低温度累积。通过应用此控制方法,可以实现离子束对温度敏感的高精度光学零件、组件级光学产品的高效、高精度加工。
-
公开(公告)号:CN111076899A
公开(公告)日:2020-04-28
申请号:CN201911269722.6
申请日:2019-12-11
Applicant: 北京空间机电研究所
Abstract: 本发明涉及一种高精度大口径非球面竖直面形检测自动调整方法,属于先进光学制造与检测领域;步骤一、通过激光跟踪仪拟合零位补偿器的中心基准轴线;步骤二、搭建非球面竖直检测系统;步骤三、在待测反射镜的顶部侧壁处粘贴6-8个靶球;通过激光跟踪仪拟合待测反射镜的环口基准面;步骤四、在待测反射镜的侧壁粘贴8-10个靶球;通过激光跟踪仪拟合待测反射镜的机械轴线;步骤五、确定投影轴线O′M;步骤六、通过调整台调整待测反射镜,实现机械轴线与投影轴线O′M重合,完成调整;本发明实现精确调整非球面检测光路中各个光学元件空间位置,具有调整精度高的特点,十分适用于米级口径以上的大口径非球面反射镜加工检测。
-
公开(公告)号:CN106705888A
公开(公告)日:2017-05-24
申请号:CN201611105616.0
申请日:2016-12-05
Applicant: 北京空间机电研究所
IPC: G01B11/25
CPC classification number: G01B11/2441 , G01B11/254
Abstract: 本发明提出一种干涉检测中的CCD坐标系与镜面坐标系非线性关系标定方法,所利用的非线性标定系统主要由激光干涉仪、补偿器、待测反射镜及其调整机构、柔性标定靶带组成。标定时,柔性标定靶带粘贴在待测反射镜镜面上。通过测量及数据处理,可获取待测反射镜的镜面坐标系与激光干涉仪CCD坐标系之间的非线性关系方程。根据非线性关系方程,可对实际测量的面形误差分布进行非线性矫正。本发明不但可以用于指导大口径、大曲率反射镜加工中的精确检测;还可以用于光学系统全链路仿真中,镜面坐标系与系统仿真模型的笛卡尔坐标系之间的非线性矫正和补偿。
-
公开(公告)号:CN115741240A
公开(公告)日:2023-03-07
申请号:CN202211216703.9
申请日:2022-09-30
Applicant: 北京空间机电研究所
Abstract: 本发明提供了一种大尺寸红外非球面硅透镜的高效加工方法,根据图纸设计要求,切割出留有加工余量的圆柱形镜坯;对镜坯外圆柱面、凸面侧和凹面侧的平台面、球面凸面和非球面凹面进行铣磨加工;以透镜的外圆和任一平台面作为安装基准,对铣磨后的非球面透镜先后进行非球面凹面、球面凸面的车削;采用集成抛光工具头的机械手对车削后的硅透镜表面进行粗抛光、精抛光;采用离子束抛光技术进行精抛光,完成红外非球面硅透镜的加工。本发明提供了一种采用数字化、定量化的的大尺寸非球面硅透镜高效加工方法,针对红外非球面硅透镜等红外用途的零件进行技术的专用性定制,明确了各个工艺步骤的边界,加快了工艺衔接速度,提高了最终成型精度。
-
公开(公告)号:CN115480598A
公开(公告)日:2022-12-16
申请号:CN202210977493.9
申请日:2022-08-15
Applicant: 北京空间机电研究所
Abstract: 一种离子束加工过程中光学镜面温度控制方法及测控系统,属于高精度非球面光学制造领域。其中,此控制方法包括基于点热源在物体内的能量沉积理论,建立面热源能量沉积模型;根据面热源能量沉积模型,依次对光学零件镜面能量沉积过程进行静态分析及动态分析,优化离子源工艺参数;通过对光学加工过程的离散化设计或对循环的加工路径稀疏化处理,降低温度累积。通过应用此控制方法,可以实现离子束对温度敏感的高精度光学零件、组件级光学产品的高效、高精度加工。
-
-
-
-
-
-
-