基于改进YOLOv2的视频图像行人检测方法及系统

    公开(公告)号:CN109829428A

    公开(公告)日:2019-05-31

    申请号:CN201910097521.6

    申请日:2019-01-31

    Abstract: 本发明公开了一种基于改进YOLOv2的视频图像行人检测方法及系统,涉及视频图像处理技术领域,包括利用K-Means++聚类算法对视频图像行人数据集进行聚类处理确定初始候选框,确定更新值;然后用更新值替换原YOLOv2算法的原始值;在更新后YOLOv2算法的网络结构的基础上添加了3个Passthrough层得到改进后的YOLOv2网络结构;利用视频图像行人数据集对改进后的YOLOv2网络结构进行训练,得到训练好的行人检测模型,进行行人检测。应用本发明,能够提高检测速度和检测精度,改善行人检测中出现的漏检、误检、遮挡等现象,满足实时性的要求。

    基于CUDA的DICOM医学影像动态非线性调窗方法

    公开(公告)号:CN103914852B

    公开(公告)日:2018-03-30

    申请号:CN201410095122.3

    申请日:2014-03-14

    Abstract: 本发明公开了一种基于CUDA的DICOM医学影像动态非线性调窗方法,包括读取DICOM格式图像中DICOM图像的像素值信息和DICOM图像的标签信息;设置图像窗口的窗宽和窗位,并将非线性函数用于调窗;基于CUDA采用并行算法计算非线性调窗中的映射方程,计算得出DIB图像的像素数据;根据计算得出的DIB图像的像素数据组成的像素数据组,以及步骤一中的标签信息填充位图结构体,并将构造的位图显示出来;根据显示的位图判断是否需要重新设置调窗的窗宽和窗位,如需要重新设置,则返回步骤二。非线性调窗对图像的显示更加细致,达到图像增强的效果,基于CUDA的并行计算有效缩短了DIB图像生成所用时间,保证了实时性。

    基于组合相似性测度的2D‑3D医学图像并行配准方法

    公开(公告)号:CN104134210B

    公开(公告)日:2017-05-10

    申请号:CN201410351843.6

    申请日:2014-07-22

    Abstract: 本发明公开了一种基于组合相似性测度的2D‑3D医学图像并行配准方法。该方法首先使用CUDA并行计算模型完成DRR图像的快速生成过程,并组合差值绝对值和SAD与模式强度PI作为新的相似性测度在GPU上进行并行计算,最后将组合相似性测度值传递到CPU上采用基于细菌趋化行为的果蝇优化算法进行优化来寻找最优配准参数。通过实验对本方法性能进行验证表明:由于本发明方法在GPU中实现DRR快速生成及混合相似性测度的计算,有效地提高了本发明方法的执行速度,同时与单一相似性测度相比,本发明采用混合相似性测度提高了配准结果的精确性。

    RDPC重构密度峰值的密度峰值聚类方法

    公开(公告)号:CN118940069A

    公开(公告)日:2024-11-12

    申请号:CN202410946230.0

    申请日:2024-07-15

    Abstract: 本发明公开了RDPC重构密度峰值的密度峰值聚类方法,本发明提供一种重构密度峰值的密度峰值聚类算法RDPC,该算法通过重构数据点的密度分布规律,统一数据集中簇的密度分布,使簇分布更好地呈现出中心区域密度高、边缘区域密度低的峰值密度分布,较好的提高了算法的聚类效果。

    一种基于改进SSD的轻量化手势实时检测方法

    公开(公告)号:CN114882536A

    公开(公告)日:2022-08-09

    申请号:CN202210656248.8

    申请日:2022-06-10

    Abstract: 本发明公开了一种基于改进SSD的轻量化手势实时检测方法,该检测方法以SSD为基础网络,包括使用MobileNet v2作为模型主干特征提取网络,减小模型的参数量和计算复杂度;设计INA多尺度卷积模块,并应用在其中三个预测特征层,通过连接不同尺寸的卷积核,增加网络对不同尺度特征的适应性;采用K‑means++聚类算法自适应生成适合手部的候选框,对手部进行准确定位来提高模型的检测精度;在制作的手势数据集上对改进后的SSD网络结构进行训练,得到训练好的手势检测模型进行手势检测。应用本发明,可以有效解决手部检测模型由于模型复杂、计算量大难以应用于移动端的问题,并且在减小模型大小和提高检测速度的同时保证了检测精度,适合人机交互下的实时手部检测。

    一种手部区域跟踪方法及系统

    公开(公告)号:CN113608618B

    公开(公告)日:2022-07-29

    申请号:CN202110918275.3

    申请日:2021-08-11

    Abstract: 本发明涉及一种手部区域跟踪方法及系统,该方法首先对自然指尖点交互的移动AR装配系统采集二维视频序列图像,并对采集的图像从图像大小、变换角度方面进行预处理,利用手部肤色均值迭代分割和APBS背景减除的方法确定待注册的手部区域位置,实现对手部区域定位;然后将相关滤波跟踪算法应用于手部区域跟踪,并采用考虑之前所有帧的策略来解决KCF算法每帧图像训练的权重向量更新问题,实现KCF算法对手部区域的自适应跟踪,进而实现复杂环境下对手部区域实时、准确及稳定的跟踪,为指尖点准确实时检测识别提供支撑。

Patent Agency Ranking