基于改进YOLOv2的视频图像行人检测方法及系统

    公开(公告)号:CN109829428A

    公开(公告)日:2019-05-31

    申请号:CN201910097521.6

    申请日:2019-01-31

    Abstract: 本发明公开了一种基于改进YOLOv2的视频图像行人检测方法及系统,涉及视频图像处理技术领域,包括利用K-Means++聚类算法对视频图像行人数据集进行聚类处理确定初始候选框,确定更新值;然后用更新值替换原YOLOv2算法的原始值;在更新后YOLOv2算法的网络结构的基础上添加了3个Passthrough层得到改进后的YOLOv2网络结构;利用视频图像行人数据集对改进后的YOLOv2网络结构进行训练,得到训练好的行人检测模型,进行行人检测。应用本发明,能够提高检测速度和检测精度,改善行人检测中出现的漏检、误检、遮挡等现象,满足实时性的要求。

    基于改进YOLOv2的视频图像行人检测方法及系统

    公开(公告)号:CN109829428B

    公开(公告)日:2020-01-17

    申请号:CN201910097521.6

    申请日:2019-01-31

    Abstract: 本发明公开了一种基于改进YOLOv2的视频图像行人检测方法及系统,涉及视频图像处理技术领域,包括利用K‑Means++聚类算法对视频图像行人数据集进行聚类处理确定初始候选框,确定更新值;然后用更新值替换原YOLOv2算法的原始值;在更新后YOLOv2算法的网络结构的基础上添加了3个Passthrough层得到改进后的YOLOv2网络结构;利用视频图像行人数据集对改进后的YOLOv2网络结构进行训练,得到训练好的行人检测模型,进行行人检测。应用本发明,能够提高检测速度和检测精度,改善行人检测中出现的漏检、误检、遮挡等现象,满足实时性的要求。

Patent Agency Ranking