-
公开(公告)号:CN102344131A
公开(公告)日:2012-02-08
申请号:CN201110187773.1
申请日:2011-07-06
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C01B31/04
Abstract: 本发明涉及一种在钼基衬底上制备石墨烯薄膜的方法,包括:将钼催化剂放入无氧反应器中,使催化剂的反应温度达到500-1600℃;向无氧反应器反应器中通入含碳气体,在0.1-760torr下反应0.1-9999min,待炉内温度冷却至室温,得到含有石墨烯薄膜的钼金属衬底;去除钼催化剂,即得石墨烯薄膜。本发明重复性高、简单易行;所得石墨烯薄膜具有大面积、层数可控、分布均匀的特点。
-
公开(公告)号:CN1828837B
公开(公告)日:2011-04-20
申请号:CN200610023732.8
申请日:2006-01-27
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/205
Abstract: 本发明涉及一种氢化物气相外延(HVPE)氮化镓(GaN)材料中采用多孔GaN作为衬底的生长方法,其特征在于首先制作多孔GaN衬底的掩膜,然后将掩膜板放入感应耦合等离子中进行刻蚀,接着用酸或碱溶液去除阳极氧化铝,得到多孔GaN衬底;其次是将上述衬底放入氧化物外延生长反应室,在N2气氛下升温750-850℃,通NH3保护模板的GaN层,于1000-1100℃开始通HCL进行GaN生长;本发明仅需采用电化学的方法腐蚀沉积在GaN表面的金属Al层,即可制成多孔网状结构来作为GaN外延的掩膜,大大简化了光刻制作掩膜的工艺。
-
公开(公告)号:CN101488475B
公开(公告)日:2010-09-01
申请号:CN200910046376.5
申请日:2009-02-20
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/78 , H01L21/20 , H01L21/3065 , H01L21/311 , C01G15/00
Abstract: 本发明涉及一种厚膜氮化镓与衬底蓝宝石自剥离的实现方法,其特征在于采用了带有钝化层超大纳米孔径GaN作为厚膜的模板。在生长厚膜GaN之前,在(0001)面蓝宝石衬底上,沉积一层GaN薄膜,然后在其上蒸发一层金属Al,再采用电化学的方法生成多孔状阳极氧化铝(AAO),然后将其刻蚀成多孔状,接着往多孔GaN孔中沉积一层介质SiO2或SiNx薄层,这样就在GaN模板上得到了带有钝化层超大纳米孔径的结构,经过清洗后,最后把这个多孔衬底置于HVPE反应腔内生长GaN厚膜。本发明提供的方法避免了光刻制作掩膜的复杂工艺,而且将孔隙尺寸缩小到纳米量级,金属Al和SiO2层均可采用电子束蒸发、溅射等方法来制备。
-
公开(公告)号:CN100547735C
公开(公告)日:2009-10-07
申请号:CN200810042459.2
申请日:2008-09-03
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/205
Abstract: 本发明涉及一种利用均匀纳米粒子点阵提高厚膜GaN质量的方法,其特征在于采用了纳米量级的SiO2、SiO或SixNy等点阵作为GaN外延掩模。在氢化物气相外延之前,先在GaN模板上电子束蒸发一层金属Al,再采用电化学的方法生成多孔状阳极氧化铝(AAO),接着往孔中注入点阵结构的介质,然后去除AAO,则模板上得到了均匀分布的SiO2纳米粒子的点阵结构,最后将模板置于反应腔内外延生长。由于气相外延的选择性,将开始选择生长在SiO2等点阵外的区域上,最后经过横向外延生长过程连接成完整的GaN膜。降低了外延层的位错密度,且位错密度均匀分布,大大提高厚膜的可利用性。方法简单易行,省略了光刻的复杂工艺,且将掩模尺寸缩小到纳米量级,适于批量生产。
-
公开(公告)号:CN100478491C
公开(公告)日:2009-04-15
申请号:CN200510028366.0
申请日:2005-07-29
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C23C16/34
Abstract: 本发明涉及一种氢化物气相外延(HVPE)氮化镓(GaN)膜中的金属插入层及制备方法,其特征在于采用了金属钨(W)插入层的结构。在HVPE制备GaN膜的过程中,先在GaN模板上电子束蒸发一层W薄层,然后经高温退火后继续HVPE生长GaN层。金属钨插入层的引入,作用是产生微区掩膜,金属W薄膜在高温下会发生团聚,同时与W接触的下层的GaN会分解,使得金属W层形成分立的多孔网状结构,从而暴露出部分的GaN膜,由于气相外延的选择性,HVPE生长时GaN将选择生长在下层的GaN上,然后经过横向外延生长过程连接成完整的GaN膜。通过GaN的微区横向外延,降低了生长的GaN的位错密度。简单易行,适合于批量生产采用。
-
公开(公告)号:CN100396816C
公开(公告)日:2008-06-25
申请号:CN200410053351.5
申请日:2004-07-30
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种氢化物气相外延(HVPE)氮化镓膜中的低温插入层及制备方法,其特征在于在GaN膜的HVPE制备过程中采用了低温AlN插入层的结构。在HVPE制备GaN膜的过程中,先在GaN模板上低温沉积一层AlN薄层,然后经高温退火后继续HVPE生长GaN层。低温AlN插入层的引入,释放了低温AlN层上继续生长的GaN膜中的应力,从而提高了GaN层的质量。这种方法简单易行,且对于低温AlN层的结晶质量要求不高,适合于科学实验和批量生产时采用,AlN层可以采用化学气相沉积、分子束外延或溅射等方法制备的。
-
公开(公告)号:CN100373553C
公开(公告)日:2008-03-05
申请号:CN200610024615.3
申请日:2006-03-10
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/30 , H01L21/322
Abstract: 本发明涉及一种氮化镓(GaN)基材料在干法刻蚀中而受损伤的修复方法,其特征在于在是将刻蚀受损的GaN基材料在高真空设备中热退火的同时通入等离子态氮处理,退火温度为用MBE(分子束外延)法生长氮化物外延层的典型生长温度(650~800℃)。真空度为用MBE法生长氮化物外延层的典型真空度(生长室背景压力约为10-9torr,通入氮等离子体时压力为8*10-5torr。)。该方法不仅改善了晶体内部结晶质量,而且有利于去除沉积在材料表面的刻蚀产物,使表面的氮空位得到了补充,相当于在去除受损表面时重新生长了一个薄层的氮化物外延层,从而使受损GaN基材料的电学和光学特性得到回升。
-
公开(公告)号:CN1544687A
公开(公告)日:2004-11-10
申请号:CN200310108793.0
申请日:2003-11-21
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C23C16/455
Abstract: 本发明涉及一种用于气相沉积的水平式反应器的结构,其特征在于采用了源气垂直喷淋供给的方式。该反应器结构由两组喷淋头、一路载气、一个样品托和一个圆形或者方形的水平腔体构成,整个反应器结构放在水平腔体内,源气和载气进气口和出气口分别在水平腔体的两端,使用时反应器水平放置。由于采用垂直喷淋供气方式,使得两种反应气体在混合区很小的情况下也可以实现均匀混合,既保证了外延生长中大面积均匀性的实现,同时也减少了对外延生长有害的预反应的发生。采用喷淋头与样品平行的结构,既可以采用集成化的反应器结构,即源气喷淋头和样品托固定在一起,也可以分别控制各气路的位置,使得反应器容易加工,使用灵活,适合于批量生产。
-
公开(公告)号:CN206317488U
公开(公告)日:2017-07-11
申请号:CN201621370004.X
申请日:2016-12-14
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本实用新型提供一种石墨烯玻璃,所述石墨烯玻璃包括:第一玻璃;石墨烯薄膜,形成于所述第一玻璃表面;第二玻璃,覆盖于所述石墨烯薄膜上,使得所述石墨烯薄膜夹在所述第一玻璃及第二玻璃之间,所述石墨烯薄膜的尺寸小于所述第一玻璃及第二玻璃的尺寸;其中,所述第一玻璃及第二玻璃没被石墨烯薄膜隔开的部分粘连,将石墨烯薄膜完全密封于粘连的玻璃之间。本实用新型的石墨烯玻璃具备防辐射和加热功能,可以用于玻璃防辐射、除霜、除雾、供暖等。本实用新型制备的石墨烯玻璃由于石墨烯被玻璃密封,石墨烯的稳定性会得到提升,使用寿命也会明显延长。
-
-
-
-
-
-
-
-