-
公开(公告)号:CN114995132B
公开(公告)日:2023-01-17
申请号:CN202210582234.6
申请日:2022-05-26
Applicant: 哈尔滨工业大学(深圳)
IPC: G05B13/04
Abstract: 本发明提出一种基于高斯混合过程的多臂航天器模型预测控制方法、设备和介质。模型预测控制在处理多臂航天器这类具有多种约束的复杂非线性系统方面具有优良的性能,并且被广泛地应用于地面机器人、无人机、自动驾驶等实际场景中。因此本发明基于模型预测控制进行任务空间控制器设计。此外,为了增强其抗干扰能力,利用高斯混合过程训练数据量小、训练速度快的特点,建立干扰模型并在模型预测控制中进行补偿。最后设计了推力分配方法完成平台控制。本发明提出的方法设计方便直观,具有较强的实用性。
-
公开(公告)号:CN115268480A
公开(公告)日:2022-11-01
申请号:CN202210735836.0
申请日:2022-06-27
Applicant: 哈尔滨工业大学(深圳)
IPC: G05D1/08
Abstract: 本发明提出一种基于李代数的欠驱动航天器姿态控制方法、设备和介质。本发明所述方法首先建立航天器的动力学模型和基于李代数的运动学模型;其次,提出整体的控制策略,在运动学层面假设欠驱动轴角速度为零,然后设计驱动轴的角速度指令以稳定三轴姿态,在动力学层面设计驱动轴角速度跟踪与欠驱动轴角速度阻尼的联合控制律实现完全的姿态稳定。针对欠驱动轴的角速度阻尼任务,设计了终端滑模控制律,相比传统的线性滑模控制律提高了收敛速度,也因此提高了整个控制系统的精度。
-
公开(公告)号:CN114261543B
公开(公告)日:2022-10-11
申请号:CN202111525414.2
申请日:2021-12-14
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明公开了一种面向空间多臂航天器系统的地面试验系统及其试验方法。所述航天器系统模拟器(2)通过4个多孔气足漂浮在气浮平台(1)上,所述气浮平台(1)周围放置有实验桁架(3),所述实验桁架(3)的顶棚(14)中间设置模拟辅助对接装置(4)、模拟爬行桁架(5)和卫星模型(6),所述实验桁架(3)的侧面设置装配实验区域(7)和静音空压机(20)。本发明用以解决现有技术无法模拟多臂航天器系统在空间中的移动、爬行、对大型空间结构装配,以及现有技术无法模拟在失重环境下装配、抓捕等动作对基座的影响等问题。
-
公开(公告)号:CN114218702B
公开(公告)日:2022-09-16
申请号:CN202111510789.1
申请日:2021-12-10
Applicant: 哈尔滨工业大学(深圳)
IPC: G06F30/17 , G06T17/00 , G06F119/14
Abstract: 本发明提出一种面向空间在轨操控的虚拟视景仿真系统,包括中央控制系统,工控机,地面实验系统,3D建模软件,虚拟视景仿真系统,高清显示器,运动捕捉系统;采用DataSmith数据导入工具,具有种类齐全的3D模型数据导入格式,可导入当前主流的CAD/CAID软件例如SolidWorks、CATIA、UG、3DMax、C4D等所建立的3D模型,实现对机械设计、场景设计等数据的导入,满足实验设计及场景渲染的需求;采用Unreal Engine5引擎进行实时渲染,做到十分逼真的实时渲染效果;数据传输采用UDP协议,具有远程显示功能,在不同地方布置固定IP的服务器或者通过UDP穿透技术可通过互联网远程显示,根据网络延迟,实时显示的延迟效果大约在50ms级别,具有很好的远程演示效果。
-
公开(公告)号:CN115027706A
公开(公告)日:2022-09-09
申请号:CN202210639983.8
申请日:2022-06-08
Applicant: 哈尔滨工业大学(深圳)
Abstract: 本发明提供了一种针对空间非合作目标的多臂航天器及抓捕方法,属于在轨服务航天器领域。解决了目前存在的抓捕机构不能够完成对无法提供可利用的抓取特征的目标的抓捕任务的问题。它包括航天器基座和四个机械臂,第一机械臂和第二机械臂对称布置在航天器基座的两个对称的侧面,第三机械臂和第四机械臂对称布置在航天器基座的另两个对称的侧面,在航天器基座的上表面设有弹性缓冲垫;第一机械臂和第二机械臂为七自由度柔性臂,第三机械臂和第四机械臂为七自由度刚性臂,柔性臂和刚性臂均包括七个臂杆,柔性机械臂的七个臂杆之间通过柔性关节连接,柔性臂和刚性臂的用于捕获目标的臂杆为弹性缓冲杆。本发明适用于空间在轨服务航天器。
-
公开(公告)号:CN115014363A
公开(公告)日:2022-09-06
申请号:CN202210642555.0
申请日:2022-06-08
Applicant: 哈尔滨工业大学(深圳)
IPC: G01C21/24
Abstract: 本发明提出一种基于旋转矩阵拓扑结构的姿态路径规划方法、系统、设备和介质。所述方法具体包括具体为:步骤一、姿态的离散化与图结构的建立:将被处理的对象离散化并在其上建立图结构;步骤二、建立姿态限制;步骤三、对A*算法中代价函数进行设计,从而完成路径规划。本发明能够规划出一条快速从危险姿态机动到安全姿态的路径,并且在机动过程中避开危险姿态。
-
公开(公告)号:CN111232248A
公开(公告)日:2020-06-05
申请号:CN202010093480.6
申请日:2020-02-14
Applicant: 哈尔滨工业大学
IPC: B64G1/24
Abstract: 本发明公开了一种基于轨控推力器脉宽调制的姿轨一体化控制方法。步骤1:4台推力器喷口位于同一平面内且平行于XOY平面;步骤2:推力器开始轨道控制;步骤3:推力器继续轨道控制;步骤4:轨道控制推力器持续开机信号与姿态测量;步骤5:计算偏差姿态;步骤6:判断X轴、Y轴姿态是否偏差:步骤7:X轴正偏差则T2关机并发送信号,X轴负偏差则T4关机并发送信号,Y轴正偏差则T3关机并发送信号,Y轴负偏差则T1关机并发送信号;步骤8:四个信号与轨道控制推力器持续开机信号叠加,判断点火时长满足否;步骤9:为否重复步骤3-8,为是结束轨道控制。本发明只需要4台对称安装的轨控推力器即可达到同类型6-14台轨控推力器的效果。
-
公开(公告)号:CN103034121A
公开(公告)日:2013-04-10
申请号:CN201310014383.3
申请日:2013-01-15
Applicant: 哈尔滨工业大学
IPC: G05B11/42
Abstract: 基于积分分离的递阶饱和PID控制器的控制方法,涉及一种递阶饱和PID控制器的控制方法,解决加入积分项的递阶饱和PID控制器会造成PID运算的积分积累,致使算得的控制量远远超过执行机构最大输出能力对应的极限控制量,最终引起系统较大的超调,甚至引起系统的震荡的问题。根据实时在台四元数Q和目标四元数Qc,计算出偏差向量e;根据星体最大控制加速度ai、最大转动角速度|ωi|max和步骤一获得的偏差向量e计算角速度约束系数Li,同时根据偏差向量e确定积分分离系数矩阵β;结合角速度约束系数Li与积分分离系数矩阵β计算输出力矩uc;分别通过姿态动力学方程与姿态运动学方程求解星体的实际角速度ω与更新后的反馈实时姿态四元数Q。本发明可广泛应用于对航天器的控制系统。
-
公开(公告)号:CN118311616B
公开(公告)日:2025-02-14
申请号:CN202410470057.1
申请日:2024-04-18
Applicant: 哈尔滨工业大学
Abstract: 本公开涉及航天器状态估计技术领域,公开了平板式卫星的状态估计方法、装置、设备及介质,用于解决无法实现平板式卫星状态与干扰力矩的同时估计的问题,方法包括:建立平板式卫星的相关坐标系,并确定系统状态方程;将系统状态方程中的角速度通道分离,并获取非线性角速度观测值;根据观测值和系统状态方程确定局部线性化方程;基于局部线性化方程中的干扰传递方程计算初始动态干扰力矩和初始估计误差协方差矩阵;确定目标动态干扰力矩、中间估计误差协方差矩阵、耦合系数、无干扰状态时的系统状态参数的参考状态估计值和参考估计误差协方差矩阵;并基于此确定目标状态估计值、目标估计误差状态矩阵。能够同时估计平板式卫星的状态与干扰力矩。
-
公开(公告)号:CN114357039B
公开(公告)日:2024-08-13
申请号:CN202011096282.1
申请日:2020-10-14
Applicant: 哈尔滨工业大学
IPC: G06F16/25 , G06F16/2458 , G06F16/2455 , G06F16/27 , G06F16/28 , G06F9/54
Abstract: 本发明公开了一种基于大数据的卫星星座云处理分析平台及其使用方法。作战管理层通过大数据平台和人工智能增强的智慧控制和通讯网络,提供自行分配任务、自行确认优先级、机载处理和分发的能力,支援层为地面指挥控制设置和用户终端,以及快速响应发射服务,导航层在北斗、GPS拒止环境中提供备份的定位、导航和授时服务,感知层提供太空态势感知、探测和跟踪太空目标,以帮助卫星碰撞,跟踪层提供导弹威胁的跟踪、瞄准和高级预警,监视层对所有确定的时间关键目标提供全天候托管,太空传输层全天候提供数据和通信的全球网状网络。卫星集群利用率、提升了星间大数据云平台的可靠性和容灾能力、降低了系统部署成本和人员运维成本。
-
-
-
-
-
-
-
-
-