-
公开(公告)号:CN112577710B
公开(公告)日:2021-05-11
申请号:CN202110210762.4
申请日:2021-02-25
Applicant: 中国空气动力研究与发展中心低速空气动力研究所
Abstract: 本发明适用于风洞试验技术领域,提供了一种迎角运动机构及迎角调整方法,其中,迎角运动机构的调整方法包括如下步骤:当试验模型的迎角为0时,计算第一连线与尾连杆之间的夹角,记为β,所述第一连线为所述龙门架的第二位置与所述龙门架的第一位置之间的连线;获取试验模型的迎角给定值α和迎角变化速度Δα;根据试验模型的迎角给定值α和迎角变化速度Δα,计算电机的给定转速n;调整试验模型的迎角测量值α1,使试验模型的迎角测量值α1与试验模型的迎角给定值α满足|α1‑α|≤η,其中,η为迎角允许误差,通过迎角编码器测得试验模型的迎角测量值α1。本发明中的迎角运动机构及迎角运动机构的调整方法,可以使迎角调整的精度较高。
-
公开(公告)号:CN112393873B
公开(公告)日:2021-04-06
申请号:CN202110029454.1
申请日:2021-01-11
Applicant: 中国空气动力研究与发展中心低速空气动力研究所
IPC: G01M9/02 , G01M9/06 , G06F30/15 , G06F30/28 , G06F113/08 , G06F119/14
Abstract: 本发明适用于风洞试验技术领域,提供了一种攻角匹配方法,该方法包括如下步骤:将S=Sri代入驻点位置随攻角的变化曲线S=Aα+B中,得到名义攻角αri对应的计算攻角αci;转动风洞转盘以使试验模型处于计算攻角αci,并测得计算攻角αci下的试验驻点位置Sci;判断|Sci‑Sri|与ΔS的关系,并确定试验模型的真实试验攻角,其中,ΔS为最小允许误差。本发明相对于现有技术而言,能够提高攻角匹配的精度和效率。
-
公开(公告)号:CN112556918A
公开(公告)日:2021-03-26
申请号:CN202110195999.X
申请日:2021-02-22
Applicant: 中国空气动力研究与发展中心低速空气动力研究所
Abstract: 本发明适用于风洞试验技术领域,提供了一种差压传感器及测压装置,其中,所述差压传感器包括第一排通道组和第二排通道组,所述第一排通道组包括n+1个第一通道,所述第二排通道组包括m+1个第二通道,其中,n为试验模型的上表面测压点总数,m为试验模型的下表面测压点总数;每个第一通道均包括第一参考端和第一测量端,每个第二通道均包括第二参考端和第二测量端。本发明可同时保障测压安全和测量精度。
-
公开(公告)号:CN111929024B
公开(公告)日:2020-12-22
申请号:CN202011029239.3
申请日:2020-09-27
Applicant: 中国空气动力研究与发展中心低速空气动力研究所
IPC: G01M9/04
Abstract: 本发明适用于风洞试验技术领域,提供了一种结冰风洞进气与高度模拟系统及方法,其中,抽气设备的入口连接抽气总管,抽气设备的出口连接排气总管,排气总管与大气连通;在进气管路的第一端和第二端之间设置有第一阀门和流量计,第一阀门位于流量计和进气管路的第一端之间;在高度管路的第一端和第二端之间设置有第二阀门;稳压管路的第一端连接在高度管路的第一端和第二端之间,稳压管路的第二端与大气连通,在稳压管路的第一端和第二端之间设置有第三阀门;结冰风洞内设置有压力传感器。本发明中,结冰风洞进气与高度模拟系统共用了一个抽气设备,相对于现有技术而言,大大节省了结冰风洞的建设成本和维护成本,可同时实现高度模拟和进气模拟。
-
公开(公告)号:CN111738627A
公开(公告)日:2020-10-02
申请号:CN202010786322.9
申请日:2020-08-07
Applicant: 中国空气动力研究与发展中心低速空气动力研究所
IPC: G06Q10/06
Abstract: 本发明适用于风洞试验技术领域,提供了一种基于深度强化学习的风洞试验调度方法及系统,该风洞试验调度方法及系统中,同时考虑了分支管线的利用率和分支管线开启阀门延迟时间,其中,目标函数的一个变量为分支管线的利用率,因而能够全局地考虑到风洞试验调度管线的分配,且这种分配中,对于下一步执行动作的选取,以通过最大化目标函数来获得,本发明的调度方法因而具有预测性,同时,能够实现最大化动力资源的使用率和最小化分支管线的开启/关闭次数,减少了动力设备的损耗;目标函数的另一变量为分支管线开启阀门延迟时间,因而能够提高预测的准确性,也能够保证实验的顺畅。
-
公开(公告)号:CN111289206A
公开(公告)日:2020-06-16
申请号:CN202010348821.X
申请日:2020-04-28
Applicant: 中国空气动力研究与发展中心低速空气动力研究所
Abstract: 本发明适用于结冰风洞结冰试验的冰形测量技术领域,提供了一种冰形测量辅助装置,包括:主框架,所述主框架整体上沿竖直方向分布;热刀框组件,所述热刀框组件可沿所述主框架竖向移动;位置测量组件,所述位置测量组件用于用测量所述热刀框组件在所述主框架上的位置;所述热刀框组件包括主框件和副框件,所述主框件与所述副框件滑动连接,所述副框件可沿所述主框件水平移动。本发明的冰形测量辅助装置中,热刀框组件在所述主框架上的位置可调,因此,可以适用于不同的模型,克服了现有技术中需要重新设计新的辅助测量装置的缺陷,因此,本发明的冰形测量辅助装置对模型的适应性较好。
-
公开(公告)号:CN110617938A
公开(公告)日:2019-12-27
申请号:CN201911041915.6
申请日:2019-10-30
Applicant: 中国空气动力研究与发展中心低速空气动力研究所
Inventor: 张平涛 , 姜裕标 , 郭龙 , 李士伟 , 云长江 , 赵维明 , 柳庆林 , 王梓旭 , 熊建军 , 林伟 , 赖庆仁 , 赵照 , 张铭镇 , 冉林 , 张轲 , 吕波 , 韩坤明 , 杨继仁
Abstract: 本发明公开了一种大型结冰风洞高度模拟系统,包括:与结冰风洞连接的吸气主管道;所述吸气主管道上设有调节阀,吸气主管道还连接真空泵组,调节阀位于结冰风洞和真空泵组之间;所述真空泵组由罗茨泵组和水环泵组构成,罗茨泵组包括多个罗茨泵,水环泵组包括多个水环泵;所述水环泵组单独工作,可模拟高度小于7000m的风洞内真空压力控制;所述罗茨泵组和水环泵组共同工作,可模拟高度7000m至20000m的风洞内真空压力控制。本发明大型结冰风洞高度模拟系统,其能模拟高度不大于20000m的风洞内真空压力控制。
-
公开(公告)号:CN110395406A
公开(公告)日:2019-11-01
申请号:CN201910625294.X
申请日:2019-07-11
Applicant: 中国空气动力研究与发展中心低速空气动力研究所
IPC: B64F5/60
Abstract: 本发明公开了一种结冰风洞防除冰供气控制系统,采用开环联合闭环控制的方式对供气压力和流量进行控制;采用冷热空气掺混控制结合闭环控制的方式对供气温度进行控制。本发明能对供气温度、供气压力和供气流量进行控制;且能有效提高压力控制的响应速度、控制精度以及稳定性;还能确保供气温度均匀,克服金属供气管路热容量大导致的温度调节速度慢,快速调节供气温度。
-
公开(公告)号:CN108803709A
公开(公告)日:2018-11-13
申请号:CN201810325276.5
申请日:2018-04-02
Applicant: 中国空气动力研究与发展中心低速空气动力研究所
IPC: G05D23/20
CPC classification number: G05D23/20
Abstract: 本发明公开了一种防冰壁面静压测量控制结构,包括加热体和用于固定加热体的连接法兰,在风洞洞壁上沿着法线设置有通孔,在通孔四周的风洞外洞壁上设置有固定连接法兰的螺纹孔,所述加热体套入连接法兰内并插入洞壁上的通孔;所述加热体内沿着轴向设置若干个孔,其中一个孔为通孔,用于插入静压管,其他的孔内用于设置加热丝和温度传感器;本发明的壁面静压测量结构简单,加热体在洞壁安装方便,静压孔周边、静压管具有电加热防冰功能,没有结冰堵塞的风险,静压测量精度高;基于调压器、温控器和固态继电器的加热体温度闭环控制系统,加热电压无级调节,加热温度任意设定,满足静压管防冰需要,运行稳定安全,性价比高。
-
公开(公告)号:CN119618122A
公开(公告)日:2025-03-14
申请号:CN202510157362.X
申请日:2025-02-13
Applicant: 中国空气动力研究与发展中心低速空气动力研究所
IPC: G01B17/02 , G01S7/539 , G06F17/16 , G06F18/10 , G06F18/2135
Abstract: 本申请涉及一种结冰厚度检测方法和装置,涉及飞行器结冰厚度数据处理技术领域,解决难以对薄冰层厚度进行有效辨识的问题,实现结冰初始阶段的高敏感度辨识,以及结冰全过程的高精度定量探测。方法包括:接收超声波穿过铝层和冰层后的多个第一反射信号,以及超声波穿过铝层后的第二反射信号;去除所述多个第一反射信号之间的重叠信号,得到各自独立的多个第三反射信号;对所述第二反射信号和所述第三反射信号进行计算,得到结冰厚度。
-
-
-
-
-
-
-
-
-