-
公开(公告)号:CN118758296A
公开(公告)日:2024-10-11
申请号:CN202410829651.5
申请日:2024-06-25
Applicant: 中北大学
IPC: G01C21/16
Abstract: 本发明提出了一种惯性导航参数测量装置,惯性导航参数测量装置包括壳体、测量组件和配重组件。壳体能够安装在高旋高过载增程弹药上,壳体与弹药之间可相对转动,且壳体的转动方向与弹药的飞行方向垂直,使得弹药在陀螺进动时壳体能够保持相对固定的姿态,使得壳体内部的测量组件的稳定性得到保障。并且为进一步提高测量组件的稳定性。本发明还在壳体内设置配重组件,当弹药在高旋高过载状态下飞行时,弹药的过载能够通过壳体与弹药连接处传递给惯性导航参数测量装置,使得惯性导航参数测量装置产生类似钟摆的运动,配重组件能够抑制惯性导航参数测量装置的转动幅度,使得惯性导航参数测量装置尽量保持固定姿态,提高稳定性。
-
公开(公告)号:CN112362083B
公开(公告)日:2022-08-09
申请号:CN202011284715.6
申请日:2020-11-17
Applicant: 中北大学
Abstract: 本发明涉及旋转弹药的制导化改造技术,具体是一种基于牛顿迭代法的姿态失准角现场快速标定补偿方法。本发明解决了传统的标定补偿方法无法对磁测信号与弹体坐标系之间的姿态失准角进行标定补偿的问题。基于牛顿迭代法的姿态失准角现场快速标定补偿方法,该方法是采用如下步骤实现的:步骤一:实时采集磁测系统输出的三轴地磁场矢量信号步骤二:计算出Z的实际值;步骤三:设定X的初值;步骤四:得出Z的估计值;步骤五:利用牛顿迭代法求解非线性约束方程组;步骤六:求解出磁测系统坐标系与弹体坐标系之间的坐标旋转矩阵步骤七:得到弹体坐标系下的三轴地磁场矢量信号本发明适用于旋转弹药的制导化改造。
-
公开(公告)号:CN112533288B
公开(公告)日:2022-07-08
申请号:CN202011568315.8
申请日:2020-12-26
Applicant: 中北大学
IPC: H04W64/00
Abstract: 本发明涉及UWB定位技术,具体是一种应用于UWB定位的可移动基站位置自标定方法。本发明解决了传统的可移动基站位置标定方法导致标定速度慢、基站布设不便的问题。一种应用于UWB定位的可移动基站位置自标定方法,该方法是采用如下步骤实现的:步骤一:在场地的同一边缘处放置两个基站,并将两个基站分别作为第0个基站和第1个基站,然后在场地内放置至少两个基站;步骤二:测量各个基站到地面的距离;步骤三:利用TOF测距法测量各个基站两两之间的距离;步骤四:令X=[x1,xi,yi,xj,yj]T,根据测量结果计算X的迭代初值X0;步骤五:将式(1)进行一阶泰勒展开,并利用牛顿迭代法对X进行迭代计算。本发明适用于UWB定位及其它无线定位技术中局部定位系统的组建。
-
公开(公告)号:CN110652661B
公开(公告)日:2021-03-26
申请号:CN201910940038.X
申请日:2019-09-30
Applicant: 中北大学
IPC: A61N5/10
Abstract: 本发明涉及一种卷积叠加剂量计算系统,包括信息输入模块、点核能量分布模拟模块、点核模型参数提取模块、点核查找表生成模块、TERM值计算模块、剂量计算模块和信息输出模块,其中点核模型参数提取模块用以构建新的剂量沉积点处采样模型,利用新模型的轴对称特性和旋转不变特性,将剂量沉积点到碰撞点的线段与碰撞点处入射射线的夹角存储,生成查找表。本发明一方面构建新的剂量沉积点处采样模型,提高了剂量计算精度;另一方面利用新模型的轴对称性和旋转不变性,将点核的旋转信息存储生成查找表,提高了剂量计算速度。
-
公开(公告)号:CN108692740B
公开(公告)日:2020-07-10
申请号:CN201810265172.X
申请日:2018-03-28
Applicant: 中北大学
Abstract: 本发明涉及硅微杯形谐振陀螺的加工方法,具体是一种基于高深宽比深硅刻蚀法的硅微杯形谐振陀螺加工方法。本发明解决了深硅刻蚀法加工出的硅微杯形谐振陀螺深宽比小、表面光滑度低的问题。基于高深宽比深硅刻蚀法的硅微杯形谐振陀螺加工方法,该方法是采用如下步骤实现的:步骤a:加工圆形通孔和第I圆环形通孔;步骤b:溅射欧姆接触层;步骤c:生长二氧化硅层;步骤d:光刻形成圆形窗口和第I圆环形窗口;步骤e:旋涂光刻胶层;步骤f:光刻形成第II圆环形窗口;步骤g:刻蚀形成第II圆环形凹腔;步骤h:将光刻胶层去除;步骤i:将第II圆环形凹腔刻蚀成为第II圆环形通孔;步骤j:将二氧化硅层去除。本发明适用于硅微杯形谐振陀螺的加工。
-
公开(公告)号:CN110368605A
公开(公告)日:2019-10-25
申请号:CN201910763457.0
申请日:2019-08-19
Applicant: 中北大学
IPC: A61N5/10
Abstract: 本发明公开一种生物效应引导的自适应放射治疗系统,包括:信息输入模块,用以输入所需数据信息;三维剂量分布计算模块,用以计算已完成分次照射的三维剂量分布,并计算当前分次照射的剂量分布;形变场计算模块,用以计算形变场;累积剂量分布计算模块,用以计算已完成分次照射的累加剂量分布;生物效应反馈计算模块,用以构造总剂量模型、计算总剂量分布,并计算病人体内各器官的生物效应反馈;治疗方案生成模块,用以生成当前分次照射计划;信息输出模块用以输出包括当前分次照射计划。本发明利用生物效应反馈引导分次照射方案优化的过程,在分次照射出现照射误差的情况下,综合地考虑了分次照射之间细胞的修复与增殖对放射治疗质量的影响。
-
公开(公告)号:CN109001493A
公开(公告)日:2018-12-14
申请号:CN201810386569.4
申请日:2018-04-26
Applicant: 中北大学
IPC: G01Q60/24 , G01R33/032
CPC classification number: G01Q60/24 , G01R33/032
Abstract: 本发明属于原子力显微镜与金刚石氮空位测磁领域,具体为一种金刚石氮空位扫描与AFM集成的高精度测磁显微装置,装置由实验座、中央磁场台、AFM实验台和NV激发收集系统组成。其中由外基座通过减震弹簧连接中央减震台;磁场固定台上搭载AFM系统,其中AFM系统由四象限光电座、探针台、样品台和激光台组成;磁场固定台搭载NV激发收集系统,激光器发射的激光经过激发光纤在转换头由二色镜反射后聚焦于探针针尖激发金刚石NV。多次聚焦的激光聚焦于靠近样品的探针针尖上,激发生成的荧光由位于探针下方的荧光收集镜采集经收集光纤传送至光子计数器分析其荧光信号;激光台控制激光聚焦于探针的悬臂反射至四象限光电转换器,检测探针振动频率的偏移计算原子作用力。
-
公开(公告)号:CN108692740A
公开(公告)日:2018-10-23
申请号:CN201810265172.X
申请日:2018-03-28
Applicant: 中北大学
Abstract: 本发明涉及硅微杯形谐振陀螺的加工方法,具体是一种基于高深宽比深硅刻蚀法的硅微杯形谐振陀螺加工方法。本发明解决了深硅刻蚀法加工出的硅微杯形谐振陀螺深宽比小、表面光滑度低的问题。基于高深宽比深硅刻蚀法的硅微杯形谐振陀螺加工方法,该方法是采用如下步骤实现的:步骤a:加工圆形通孔和第I圆环形通孔;步骤b:溅射欧姆接触层;步骤c:生长二氧化硅层;步骤d:光刻形成圆形窗口和第I圆环形窗口;步骤e:旋涂光刻胶层;步骤f:光刻形成第II圆环形窗口;步骤g:刻蚀形成第II圆环形凹腔;步骤h:将光刻胶层去除;步骤i:将第II圆环形凹腔刻蚀成为第II圆环形通孔;步骤j:将二氧化硅层去除。本发明适用于硅微杯形谐振陀螺的加工。
-
公开(公告)号:CN104931034B
公开(公告)日:2017-07-14
申请号:CN201510334592.5
申请日:2015-06-16
Applicant: 中北大学
IPC: G01C19/5776
Abstract: 本发明涉及微机械陀螺仪,具体是一种基于偶极子补偿法的微机械陀螺仪带宽拓展方法。本发明解决了微机械陀螺仪无法兼顾机械灵敏度和带宽的问题。基于偶极子补偿法的微机械陀螺仪带宽拓展方法,该方法是采用如下步骤实现的:1)以扫频的方式确定微机械陀螺仪驱动模态和检测模态的谐振角频率;2)根据微机械陀螺仪驱动模态和检测模态扫频测试的结果,计算得出微机械陀螺仪驱动模态和检测模态的品质因数;3)在微机械陀螺仪的检测回路中增设偶极子补偿控制器;所述偶极子补偿控制器包括零极点发生环节、比例环节。本发明适用于微机械陀螺仪。
-
公开(公告)号:CN106523533A
公开(公告)日:2017-03-22
申请号:CN201611178545.7
申请日:2016-12-19
Applicant: 中北大学
Abstract: 本发明涉及被动式半捷联惯性测量系统中的轴承连接结构,具体是一种适用于被动式半捷联惯性测量系统的双轴承嵌套结构。本发明解决了现有被动式半捷联惯性测量系统中的轴承连接结构在高过载、高旋转环境下容易出现摩擦力矩增大以及抗过载能力差的问题。一种适用于被动式半捷联惯性测量系统的双轴承嵌套结构,包括轴承外支架、轴承内支架、大轴承、小轴承、大防松垫圈、大压螺、中防松垫圈、中压螺、小防松垫圈、小压螺;轴承内支架嵌设于轴承外支架的内腔,且轴承内支架的轴线与轴承外支架的轴线重合;轴承内支架与轴承外支架之间留设有环形间隙;大轴承嵌设于环形间隙内;小轴承嵌设于轴承内支架的内腔。本发明适用于被动式半捷联惯性测量系统。
-
-
-
-
-
-
-
-
-