一种多智能体系统实时任务分配与负载均衡方法及系统

    公开(公告)号:CN118396338B

    公开(公告)日:2024-09-24

    申请号:CN202410815879.9

    申请日:2024-06-24

    Applicant: 无锡学院

    Abstract: 本发明提供一种多智能体系统实时任务分配与负载均衡方法及系统,涉及任务分配技术领域,本发明针对物流装配任务,将一个整体任务拆分成若干子任务交由不同的智能机器人执行,按照最小负载优先算法,通过智能机器人的资源利用率、执行任务情况生成评估智能机器人负载情况的负载指数,并建立轮询序列表,按照冒泡排序从小到大收集这些负载指数,有新任务到达时,优先分配给负载最低的智能机器人执行,对于每个分配到任务的智能机器人,重新计算其负载指数并更新轮询序列表,直到所有任务分配到智能机器人去执行,同时对执行任务的智能机器人进行监控,及时通过调整智能机器人的负载权重来保证智能机器人执行任务的安全和效率,维护系统的稳定性。

    一种灭火救援作战能力评估方法
    32.
    发明公开

    公开(公告)号:CN118536865A

    公开(公告)日:2024-08-23

    申请号:CN202410638328.X

    申请日:2024-05-22

    Applicant: 无锡学院

    Abstract: 本发明公开了一种灭火救援作战能力评估方法,涉及评估方法技术领域,不仅采用了客观赋权和主观赋权两种方式进行指标权重的赋值,而且引入了博弈论进行组合赋权,博弈论提供了一种研究主客观赋权法在冲突中协调作用的方法,旨在寻求两者的最大利益,并同时兼顾主客观权衡,从而充分考虑了各个指标之间的相互关系,有助于降低主观偏见,提高赋权的科学性,从而增强了评估指标权重的科学性,为建立灭火救援作战能力评估模型提供了良好的基础,使评估结果更具客观性和准确性。除此之外,本发明还采用了属性数学的方法对作战能力进行评估,这种方法具有科学性和实用性,能够为提升消防队站的灭火救援作战能力提供指导意义。

    一种电力物联网信息安全风险评估方法及系统

    公开(公告)号:CN118432943A

    公开(公告)日:2024-08-02

    申请号:CN202410878361.X

    申请日:2024-07-02

    Applicant: 无锡学院

    Abstract: 本发明提供一种电力物联网信息安全风险评估方法及系统,涉及信息安全技术领域。本发明针对电力物联网系统中重要度高并且容易出现安全漏洞的设备、网络、数据进行安全检测,分别对每种攻击方式建立攻击树模型,生成攻击影响指数以评估设备、网络、数据的安全风险状况,根据攻击树的风险,生成应对每种风险的安全措施,通过分析系统中是否存在对应的安全措施以及安全措施的应对效果,生成安全控制指数以评估安全措施针对不同类型攻击的应对效果,最终结合攻击影响指数和安全控制指数生成综合评价指数判断电力物联网系统的安全风险情况。

    一种考虑多种气象因子的电网故障预测方法及系统

    公开(公告)号:CN118411160A

    公开(公告)日:2024-07-30

    申请号:CN202410879277.X

    申请日:2024-07-02

    Applicant: 无锡学院

    Abstract: 本发明提供一种考虑多种气象因子的电网故障预测方法及系统,旨在提高电网故障预测的准确性和效率。该方法首先收集电网各个线路的历史故障数据和相应的气象数据,包括温度、湿度、风速和降雨量,并将这些数据映射到预定义的气象区间内以计算不同条件下的故障概率指数。接着,利用卷积神经网络构建气象因子故障概率模型,卷积神经网络能够从历史故障和气象数据中提取深层次特征,通过历史数据训练得到的模型不仅能够适应数据的复杂性,还能够实现更为准确的故障预测。通过实时采集的气象数据和电力数据,模型能够预测各个线路的故障概率,进而通过与预设的故障阈值进行比较,筛选出潜在的风险预警线路。

    一种基于极限学习机的工厂化水产养殖溶解氧预测方法

    公开(公告)号:CN113962819A

    公开(公告)日:2022-01-21

    申请号:CN202111170371.0

    申请日:2021-10-08

    Applicant: 无锡学院

    Abstract: 本发明公开了一种基于极限学习机的工厂化水产养殖溶解氧预测方法。属于水产养殖技术领域;具体步骤:数据预处理、因子筛选、构建IELM网络模型和测试预测方法、输出预测结果。本发明利用数据预处理方法校正缺失的数据;利用皮尔森相关系数法对指标因子进行筛选,确定与溶解氧浓度关联性最强的8项指标作为预测方法的输入量,并将预处理后的数据集分成训练集和测试集;接着利用人工蜂群算法优化极限学习机的初始权值和阈值,得到最佳参数值,构建IELM网络模型;最后,在测试集中将获得的IELM的溶解氧预测值与传统的ELM模型的预测结果对比,IELM预测方法的预测效果更好,更能精准的预测工厂化水产养殖中溶解氧变化趋势。

    基于智能穿戴设备多源数据融合分析的健康风险评估系统

    公开(公告)号:CN119538060B

    公开(公告)日:2025-04-25

    申请号:CN202510097082.4

    申请日:2025-01-22

    Applicant: 无锡学院

    Abstract: 本发明提供一种基于智能穿戴设备多源数据融合分析的健康风险评估系统,涉及健康风险评估技术领域,本发明获取智能穿戴设备获取佩戴者的运动数据、生理数据和周围环境数据;对运动数据进行分析得到运动健康指标、对生理数据进行分析获得生理健康指标;根据周围环境数据和活动强度指数将目标状态判断为,休息状态、正常状态和运动状态;根据运动健康指标和生理健康指标生成运动健康评估系数和生理健康评估系数;根据运动健康评估系数和生理健康评估系数生成目标健康状态评估系数,根据目标健康状态评估系数完成对目标各状态的健康评估;本发明考虑到目标状态的差异性,从运行和生理角度完成对目标状态的准确、科学评估。

    一种基于深度学习的滚动轴承剩余寿命预测方法

    公开(公告)号:CN119226735A

    公开(公告)日:2024-12-31

    申请号:CN202411307450.5

    申请日:2024-09-19

    Applicant: 无锡学院

    Abstract: 本发明公开一种基于深度学习的滚动轴承剩余寿命预测方法,将预先获取的滚动轴承的振动信号输入训练获得的端到端模型,利用端到端模型预测输出滚动轴承的剩余使用寿命;其中,端到端模型包括依次连接的第一卷积层、APP1层、第一Dropout层、第一Mixer模块、第二Mixer模块、第三Mixer模块、APP4层和全连接层。本发明采用的MDSCT模型的RUL预测使用原始振动数据,并通过融合多尺度深度可分离卷积注意力网络和PPSformer模块有效地提取轴承振动信号的全局和局部特征,优化了网络捕获的退化特征能力,使RUL预测更加准确。

    一种基于强化学习的无人机辅助配送系统及方法

    公开(公告)号:CN118170013B

    公开(公告)日:2024-11-26

    申请号:CN202410207143.3

    申请日:2024-02-26

    Applicant: 无锡学院

    Abstract: 本发明公开了一种基于强化学习的无人机辅助配送方法,包括如下步骤:步骤一、构建用于无人机辅助配送的数学模型,即无人机配送调度问题模型,包括无人机任务分配模型和无人机路径规划模型;步骤二、基于PPO‑PSO算法,采用LSTM–CNN神经网络架构,分别设计用于无人机任务分配模型的任务分配算法和用于无人机路径规划模型的航线规划算法;步骤三、构建自主制导与跟踪避障模型,使无人机能够适应对象和环境的不确定性,具有变参数、变结构的能力,实现地面随机运动目标的连续跟踪和合理避障;步骤四、将自主制导与跟踪避障模型在pybullet平台上进行训练,将训练好的神经网络架构部署到设计好的实验环境上,采用ros系统进行仿真验证。

Patent Agency Ranking