-
公开(公告)号:CN106899027A
公开(公告)日:2017-06-27
申请号:CN201710198504.2
申请日:2017-03-29
Applicant: 哈尔滨工业大学
Abstract: 汽轮机高调阀门流量动态非线性的一次调频能力补偿方法,涉及汽轮机高调阀门流量动态非线性的一次调频能力补偿技术领域。本发明是为了解决燃煤汽轮机高调阀门的流量动态非线性导致的汽轮机转速实际不等率大于设定的转速不等率的问题。本发明所述的汽轮机高调阀门流量动态非线性的一次调频能力补偿方法,根据有功功率指令和一次调频因子,针对性修正不等率设置,保证转速变化1%时,通过一次调频使发电功率变化20%,保证燃煤汽轮机发电机组具有设定的一次调频能力。本发明所述的汽轮机高调阀门流量动态非线性的一次调频能力补偿方法,适用于亚临界燃煤汽轮机发电机组的一次调频能力补偿。
-
公开(公告)号:CN106870024A
公开(公告)日:2017-06-20
申请号:CN201710197445.7
申请日:2017-03-29
Applicant: 北京华建网源电力设计研究所 , 哈尔滨工业大学 , 国网宁夏电力公司经济技术研究院 , 哈尔滨燃卓科技开发有限公司
IPC: F01D19/00
CPC classification number: F01D19/00
Abstract: 燃煤汽轮机发电机组采暖供热的一次调频能力补偿方法,涉及燃煤汽轮机发电机组采暖供热的一次调频能力补偿技术领域。本发明是为了解决目前燃煤汽轮机发电机组在汽轮机采暖供热的时候,机组一次调频能力也会改变的问题。本发明所述的燃煤汽轮机发电机组采暖供热的一次调频补偿方法,当汽轮机采暖供热后,针对性修改不等率设置,保证转速变化1%时,通过一次调频使发电功率变化20%。保证汽轮机在采暖供热后,燃煤汽轮机发电机组仍具有同样的一次调频能力。
-
公开(公告)号:CN105134386B
公开(公告)日:2017-04-12
申请号:CN201510556992.0
申请日:2015-09-02
Applicant: 哈尔滨工业大学
IPC: F02C9/00
Abstract: 基于测点加权值的燃气轮机燃烧系统在线监测方法,属于燃气轮机燃烧系统监测领域。现有的燃烧监测系统难以对燃烧状态变化趋势做出判断的问题。一种基于测点加权值的燃气轮机燃烧系统在线监测方法,在燃气轮机的透平出口周向均匀地布置n个温度测点,得到tm时段内正常运行的排温数据Ti;增加Ti与T1的相关因子αi,1,根据Ti与T1的关系函数,分别得到Ti的预测值;计算无故障温度测点1排温理论值T1';令温度测点1的理论值T1'与温度测点1的实测值T1之差为△T1满足均值为0、标准差为σ1的正态分布;通过△T1与范围[‑3σ1,3σ1]的关系进行温度测点的监测。本发明实现燃气轮机排温的在线监测,充分利用排温各个测点之间的相关性,准确检测出异常演变过程。
-
公开(公告)号:CN106451499A
公开(公告)日:2017-02-22
申请号:CN201611142564.4
申请日:2016-12-12
Applicant: 哈尔滨工业大学
IPC: H02J3/24
CPC classification number: H02J3/24
Abstract: 一种用于高风电渗透率电网的火电机组动态一次调频控制方法,本发明涉及一种火电机组动态一次调频控制方法。本发明为了解决风电输出功率波动对系统频率稳定造成的影响,对火电机组参加一次调频时的频率响应特性进行分析,在保证火电机组稳定性的前提下,提出动态调整火电机组调差系数的一次调频控制方法。该控制方法可以有效提升火电机组的一次调频能力,使火电机组参加一次调频时具备更高的灵活性与能力,有利于含风电系统的频率稳定。在含风电的单区域仿真系统中,考虑15%风电功率预测误差时,系统频率的最大波动偏差由0.126Hz减小至0.0663Hz,满足电网对频率的要求。本发明应用于火电机组控制领域。
-
公开(公告)号:CN105841213A
公开(公告)日:2016-08-10
申请号:CN201610263569.6
申请日:2016-04-26
Applicant: 南京遒涯信息技术有限公司 , 哈尔滨燃卓科技开发有限公司 , 哈尔滨机易电站设备有限公司 , 国电双鸭山发电有限公司 , 哈尔滨工业大学
CPC classification number: F24D3/10 , F24D19/1015
Abstract: 间接空冷机组高背压供热宽适应性控制机构及控制方法,本发明涉及间接空冷系统控制机构及控制方法,本发明为了解决现有技术中冬季时利用间接空冷机组进行高背压供热时容易带来的供热量与热网热需求量不匹配的问题,它包括热网用户、热网循环换热器、凝结水泵、热网循环水泵、循环水泵空冷塔和凝汽器组件,它还包括热网控制阀门组件、空冷控制阀门组件和阀门组件控制系统,热网控制阀门组件设置在热网循环换热器的机侧入口管和机侧出口管上,空冷控制阀门组件设置在空冷塔的循环水入口管和循环水出口管上,热网循环水泵安装在热网循环换热器的机侧入口管上。本发明属于电力系统领域。
-
公开(公告)号:CN103413174B
公开(公告)日:2016-02-17
申请号:CN201310389450.X
申请日:2013-08-30
Applicant: 哈尔滨工业大学
IPC: G06N3/08
Abstract: 基于深度学习方法的短期风速多步预测方法,涉及一种短期风速的多步预测方法。为了解决目前的风速预测方法存在风速预测效果差的问题。它包括:一:基于深度学习方法,建立具有多输入多输出结构的深度神经网络回归模型;二:采用逐层贪心方法,结合被测风电场的近期实际风速数据对建立的深度神经网络回归模型进行训练,通过所述模型的非线性映射功能,学习得到所述模型的序列之间的映射关系,来确定深度神经网络回归模型;三:根据确定的深度神经网络回归模型,对被测风电场的实际风速进行多步预测,得到所述被测风电场的风速预测结果。它用于风电场短期风速的预测。
-
公开(公告)号:CN105241669A
公开(公告)日:2016-01-13
申请号:CN201510570945.1
申请日:2015-09-09
Applicant: 哈尔滨工业大学 , 南京遒涯信息技术有限公司
IPC: G01M15/14
Abstract: 基于比较编码的燃气轮机燃烧系统在线监测方法,属于燃气轮机燃烧系统在线监测诊断领域。现有的燃机燃烧系统在线监测方法不能全面的描述燃烧室工作情况和不能在故障发生早期发出报警。一种基于比较编码的燃气轮机燃烧系统在线监测方法,获得燃机透平排气通道中各个测点的排气温度数据值并进行计算,确定各个测点之间允许的差异值确定为阈值Gn;将各个相邻测点排气温度进行比较,并定义离散化的编码序列M(ξ1,ξ2,…,ξn),去除工况和环境变化的影响;检测相似度的变化趋势,以此判断燃机系统的运行状况。本发明方法具有提高燃机运行安全性和减少经济损失的优点。
-
公开(公告)号:CN103032112A
公开(公告)日:2013-04-10
申请号:CN201310015948.X
申请日:2013-01-16
Applicant: 哈尔滨工业大学
IPC: F01D17/10
Abstract: 一种流量线性变化的汽轮机配汽规律无扰切换方法,它涉及一种无扰切换方法,具体涉及一种流量线性变化的汽轮机配汽规律无扰切换方法。本发明为了解决现有汽轮机配汽规律切换时会引起机组功率较大的扰动的问题。本发明所述由配汽方式F切换到配汽方式G的具体步骤如下:在汽轮机数字电液控制系统中根据配汽方式F和配汽方式G确定各个阀门的切换起始阀位fi(x0)和目标阀位gi(x0);在t1时刻确定阀门入口压力P0,调节级后压力P1,压比根据压比ε、切换时间[t1,t2]在各个阀门非线性流量特性曲线上确定各个阀门的切换规律在汽轮机数字电液控制系统中设计自动切换逻辑,实现汽轮机组的自动无扰切换模式。本发明用于汽轮机配汽方法的切换。
-
公开(公告)号:CN102678192A
公开(公告)日:2012-09-19
申请号:CN201210168056.9
申请日:2012-05-28
Applicant: 哈尔滨工业大学
IPC: F01D9/02
Abstract: 考虑汽轮机实际运行约束的各喷嘴组的喷嘴数目优化设计方法,它涉及一种汽轮机的喷嘴数目优化设计方法。本发明是针对现有机组在多个常用工作负荷点条件下,对其中某些工作负荷点阀门开度小造成较大节流损失,相对内效率降低的问题而提出的。构建喷嘴数目优化模型;计算各个给定负荷点的实际流量;计算各个给定负荷点的理论流量;构建喷嘴数目优化模型的约束条件;基于遗传算法理论求出给定负荷点下使得实际流量与理论流量的综合偏离程度Y最小时对应的最优喷嘴数目的组合。在保证机组达到各负荷点时,调节级各阀门都能处于全开或全闭状态,最大限度地减少汽轮机调节级的节流损失的条件下,优化出最优的阀门喷嘴数目组合,使机组具有最佳的经济性。
-
公开(公告)号:CN119995935A
公开(公告)日:2025-05-13
申请号:CN202411991036.0
申请日:2024-12-31
Applicant: 哈尔滨工业大学 , 哈尔滨电站设备成套设计研究所有限公司
Abstract: 本发明公开了一种面向工业物联网的隐私增强型访问控制方法,所述方法包括如下步骤:步骤一、密钥生成与注册;步骤二、数据加密与存储;步骤三、访问控制与验证;步骤四、数据计算与解密。该方法通过物理不可克隆函数(Physical Unclonable Function,PUF)的唯一性与不可复制性保护私钥安全,结合Paillier同态加密实现加密态数据运算,并利用区块链智能合约进行分布式访问控制与审计,实现设备数据的安全存储、访问管理与隐私保护,有效提升系统的安全性和效率,解决了现有技术中的安全性与隐私保护难题,为工业物联网环境提供更加完善的安全解决方案。
-
-
-
-
-
-
-
-
-