-
公开(公告)号:CN112082662A
公开(公告)日:2020-12-15
申请号:CN202010955982.5
申请日:2020-09-11
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明属于光探测技术领域,涉及一种检测超导纳米线单光子探测器件对准结果的方法、装置、设备及存储介质。所述方法包括:提供超导纳米线单光子探测器件,所述超导纳米线单光子探测器件包括探测芯片,所述探测芯片与入射光纤相对准;获取所述探测芯片的图像,所述图像包括所述探测芯片的探测面的中心和入射到所述探测面上的所述入射光纤的光斑;对所述图像进行处理,获取所述光斑的中心与所述探测面的中心之间的距离,以根据所述距离获取所述入射光纤与所述探测芯片的对准结果。本发明能够检测超导纳米线单光子探测器件的对准度,从而能够在一定程度上提高超导纳米线单光子探测器件的对准精度。
-
公开(公告)号:CN109727850B
公开(公告)日:2020-12-08
申请号:CN201811564257.4
申请日:2018-12-20
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/265 , H01L21/67
Abstract: 本发明提供一种利用离子注入实现目标薄膜纵向均匀掺杂的方法,包括于目标薄膜的厚度方向上选取N个不同的注入深度峰值点;确定待注入离子并提供M组预设注入条件以模拟待注入离子注入目标薄膜时的离子注入过程,得到注入能量‑注入深度分布函数组,从而得到N个与注入深度峰值点一一对应的注入能量值;设定目标薄膜纵向掺杂的总目标浓度,并基于总目标浓度得到N个与注入能量值一一对应的注入剂量值,且N个注入剂量值之和的方差最小化;基于注入能量值及注入剂量值形成N组注入条件以控制待注入离子注入至目标薄膜,实现通过N次离子注入在纵向上叠加实现目标薄膜的纵向均匀掺杂。通过本发明解决了现有离子注入方法无法实现纵向均匀掺杂的问题。
-
公开(公告)号:CN112038479A
公开(公告)日:2020-12-04
申请号:CN202010922048.3
申请日:2020-09-04
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种电感可调的超导量子器件及其制备方法,器件包括:衬底、金属电阻层、第一绝缘层、第一超导薄膜层、第二绝缘层和第二超导薄膜层,第一超导薄膜层被刻蚀形成超导量子器件的环路和引线结构,第二超导薄膜层被刻蚀形成约瑟夫森结区、第三绝缘层、第三超导薄膜层,其厚度小于其穿透深度,其被刻蚀形成输入线圈、第四绝缘层,其形成有第二过孔,用于连接金属电阻层和引出约瑟夫森结的顶电极、第四超导薄膜层,其被刻蚀形成配线层、反馈线圈和引线管脚。本发明将超导体动态电感引入到超导量子器件输入电感设计中,有效解决了目前几何电感带来的分布电容大、集成度低、大电感不易实现、且环路电感Ls难减小等问题。
-
公开(公告)号:CN107507884B
公开(公告)日:2020-12-01
申请号:CN201710678412.4
申请日:2017-08-10
Applicant: 中国科学院上海微系统与信息技术研究所 , 浙江赋同科技有限公司
IPC: H01L31/09 , H01L31/0232 , G01J11/00 , B82Y30/00
Abstract: 本发明提供一种宽谱超导纳米线单光子探测器件,所述宽谱超导纳米线单光子探测器件包括:衬底;反射镜,位于所述衬底表面;叠层结构,位于所述反射镜表面;所述叠层结构中包括至少两层上下间隔排布的超导纳米线。本发明的宽谱超导纳米线单光子探测器件通过在反射镜上设置包括至少两层上下间隔排布的超导纳米线的叠层结构,可以实现两层或多层超导纳米线的吸收,从而拓展所述宽谱超导纳米线单光子探测器件的高效吸收带宽,具有较高的吸收效率。
-
公开(公告)号:CN111725382A
公开(公告)日:2020-09-29
申请号:CN201910223216.7
申请日:2019-03-22
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种超导磁通量子存储单元结构及其写入和读取方法,该结构包括:约瑟夫森结存储环路,具有一个第一约瑟夫森结;发热电阻,设置于约瑟夫森结存储环路中的第一约瑟夫森结附近,用于控制约瑟夫森结的温度。通过在第一约瑟夫森结附近设置发热电阻,利用发热电阻发热来调节第一约瑟夫森结区附近的温度,从而改变其临界电流,而不需要通过外部磁场耦合来改变第一约瑟夫森结的临界电流,相对于现有技术中的外部磁场耦合的方式调制临界电流,本发明采用发热电阻调制临界电流可使得约瑟夫森结存储环路的面积大大减小;利用纳米桥结替代传统的隧道结,在获得高动态电感的同时也可以进一步减小存储环路对几何电感的需求从而减小环路面积,并且也可以缩小第一约瑟夫森结的面积。
-
公开(公告)号:CN111682096A
公开(公告)日:2020-09-18
申请号:CN202010397024.0
申请日:2020-05-12
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种平面超导纳米桥结的制备方法,在衬底表面进行光刻形成图案,然后沉积金属薄膜;利用离子束刻蚀金属,金属因反溅射现象沿着光刻胶形成侧壁,去胶,即得纳米桥,桥的宽度即为反溅射的金属薄膜厚度,因此可以超越光刻极限;沉积超导薄膜、光刻,刻蚀形成桥两端的电极,即得。本发明具有低成本,易集成,高精度等优势。
-
公开(公告)号:CN108051405B
公开(公告)日:2020-06-19
申请号:CN201711189276.9
申请日:2017-11-24
Applicant: 中国科学院上海微系统与信息技术研究所 , 中国科学院大学
IPC: G01N21/41
Abstract: 本发明提供一种光学胶折射率测量器件、测量系统及测量方法,所述光学胶折射率测量器件包括:衬底;微纳光纤,位于贴置于所述衬底的上表面,且所述微纳光纤的两端延伸至所述衬底的外侧;光学胶,位于所述衬底的上表面,且固化包覆于所述微纳光纤的外围。本发明可用于低温条件下对光学胶折射率进行测量,低温条件的温度可以达到约2K(开尔文);本发明对待测量的光学胶的形状没有要求,使用更加灵活方便;本发明的器件、系统结构简单,便于操作,测量结构稳定性及准确性较高。
-
公开(公告)号:CN110739010A
公开(公告)日:2020-01-31
申请号:CN201911001686.5
申请日:2019-10-21
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种低温存储单元及存储器件,低温存储单元包括:自旋矩转移器件,自旋矩转移器件将写电流转化为自旋极化电流,并在自旋极化电流的作用下改变磁极化方向,以实现0和1的写入存储;纳米超导量子干涉器件,纳米超导量子干涉器件的接地端与自旋矩转移器件的接地端共地连接;纳米超导量子干涉器件在自旋矩转移器件磁极化方向改变的作用下发生磁通变化,从而在读电流信号偏置下实现超导态和非超导态的互相转变,实现0和1的读出。本发明的低温存储单元可以大幅降低自旋矩转移器件的电阻,从而降低低温存储单元的存储写入的功耗,读出信号与RSFQ电路信号可以达到完全兼容。
-
公开(公告)号:CN107871812B
公开(公告)日:2019-11-26
申请号:CN201711008605.5
申请日:2017-10-25
Applicant: 中国科学院上海微系统与信息技术研究所 , 中国科学院大学
Abstract: 本发明提供一种基于3D纳米桥结的超导量子干涉滤波器及其制备方法,包括:于基片上形成第一超导材料层并图形化,形成第一电极;覆盖绝缘材料层;于绝缘材料层的表面形成第二超导材料层并图形化,形成第二电极;去除第一电极上方的绝缘材料层,于第一、第二电极之间形成绝缘夹层,剥离光刻胶;于第一电极、绝缘夹层及第二电极的上表面形成纳米线,以得到多个3D纳米桥结,两个3D纳米桥结并联形成超导量子干涉器件,多个超导量子干涉器件串联、并联或串并联形成基于3D纳米桥结的超导量子干涉滤波器。本发明将3D纳米桥结应用于SQIFs阵列,通过改变3D纳米桥结的串、并联的不同方式,来达到减小SQIFs阵列的面积,增大SQIF的集成度的目的。
-
公开(公告)号:CN110032792A
公开(公告)日:2019-07-19
申请号:CN201910278235.X
申请日:2019-04-09
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G06F17/50
Abstract: 本发明提供一种超导数字电路设计方法,包括:基于超导数字电路的设计需求进行系统架构设计和功能设计后生成电路设计网表;对所述电路设计网表中任一数据通路上的所有单元电路的所有端口均进行磁通存储能力检测,并在端口具有磁通存储能力时,于该端口处增设一缓冲单元,以此实现对所述电路设计网表的时序优化,从而得到终端电路设计网表;对所述终端电路设计网表进行逻辑功能验证及时序验证后生成超导数字电路版图,并对所述超导数字电路版图进行物理验证以完成超导数字电路设计。通过本发明解决了现有采用单元库设计方法进行超导数字电路设计时,因同一超导数字单元电路后接不同负载而引起的超导数字电路时序分析准确性较低的问题。
-
-
-
-
-
-
-
-
-