-
公开(公告)号:CN103151245B
公开(公告)日:2016-02-17
申请号:CN201310103325.8
申请日:2013-03-28
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/02
Abstract: 本发明提供一种薄膜图形化方法,该方法至少包括以下步骤:提供一非金属衬底,并在该非金属衬底上形成光刻胶;进行光学曝光,将预设图形转移至该光刻胶上;在步骤2)之后获得的结构上沉积金属层;然后去除光刻胶并剥离,获得所需金属图形结构;在上述金属图形结构表面沉积薄膜材料,形成薄膜;最后去除剩余金属层得到图形化薄膜。本发明利用通常的图形化技术,实现金属的图形化,再以金属为掩膜板,在衬底上直接沉积高温生长的薄膜材料,该发明即沿用了传统的图形化技术,又克服了光刻胶在高温下无法做掩膜板使用的弊端;与离子束刻蚀方法相比,本发明工艺简单,易于操作,且花费较低。
-
公开(公告)号:CN104992905A
公开(公告)日:2015-10-21
申请号:CN201510307155.4
申请日:2015-06-05
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/306
CPC classification number: H01L21/30612
Abstract: 本发明提供一种氮化硼衬底表面台阶刻蚀方法,包括如下步骤:S1:提供一六角氮化硼衬底;S2:在所述六角氮化硼衬底表面形成掩膜层,并在所述掩膜层中形成暴露出所述六角氮化硼衬底表面的预设刻蚀图形;S3:在所述掩膜层表面及所述预设刻蚀图形内沉积金属层;S4:剥离所述掩膜层及其表面的金属层;S5:对所述六角氮化硼衬底进行退火,然后去除所述预设刻蚀图形内的金属层,在所述六角氮化硼衬底表面得到单层氮化硼原子厚度的台阶。本发明不仅可以控制六角氮化硼图形化的形状,大小,还可以选择刻蚀区域,同时可以通过反复刻蚀,控制刻蚀台阶的高度,解决了基于六角氮化硼薄膜器件的图形化加工难题。
-
公开(公告)号:CN104928649A
公开(公告)日:2015-09-23
申请号:CN201510189745.1
申请日:2015-04-20
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: C30B25/186 , C01B32/186 , C22F1/08 , C23C14/165 , C23C14/35 , C23C14/5806 , C23C16/0227 , C23C16/0281 , C23C16/26 , C23C16/455 , C23F17/00 , C25D3/12 , C25D5/34 , C25D5/50 , C25D7/0614 , C25F3/22 , C30B25/12 , C30B25/165 , C30B29/02
Abstract: 本发明提供一种局域供碳装置及局域供碳制备晶圆级石墨烯单晶的方法,方法包括:提供局域供碳装置;制备镍铜合金衬底,将镍铜合金衬底置于局域供碳装置内;将放置有镍铜合金衬底的局域供碳装置置于化学气相沉积系统的腔室中,在局域供碳装置中通入气态碳源,从而在镍铜合金衬底上生长石墨烯单晶。本发明制备得到的石墨烯晶畴结晶性好,制备条件简单、成本低,生长所需条件参数的窗口较宽、重复性好,为晶圆级石墨烯单晶在石墨烯器件等领域的广泛应用打下了基础。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
-
公开(公告)号:CN102931057B
公开(公告)日:2015-03-25
申请号:CN201210461745.9
申请日:2012-11-16
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种基于栅介质结构的石墨烯场效应器件及其制备方法,该石墨烯场效应器件包括:具有栅电极沟槽的衬底;形成于所述栅电极沟槽中的栅电极;Al2O3介电薄膜层,位于所述栅电极沟槽中的栅电极表面,且Al2O3介电薄膜层表面与衬底表面齐平;覆盖于所述Al2O3介电薄膜层和衬底表面的BN薄膜层;形成于所述BN薄膜层上方的石墨烯;设置在所述石墨烯上方的源电极和漏电极,所述源电极和漏电极分别与石墨烯电性连接。本发明制备的BN薄膜层与Al2O3介电薄膜层共同构成新型的栅介质结构,有效保持了石墨烯中固有载流子的高迁移率,增强栅极的场效应作用,适用于石墨烯基高射频器件及碳基大规模集成电路制造领域。
-
公开(公告)号:CN103839835A
公开(公告)日:2014-06-04
申请号:CN201410114348.3
申请日:2014-03-25
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/336 , B82Y40/00
CPC classification number: H01L29/66045
Abstract: 本发明提供一种基于石墨烯场效应管的微区加方法及结构,所述微区加热结构包括以下步骤:首先,制备基于石墨烯的场效应管,所述石墨烯具有窄边微区结构,所述场效应管的背面设置有背栅;然后,在所述石墨烯两端的电极之间加电压源或电流源,通过调节背栅电压,调制窄边微区结构的电阻,从而实现窄边微区结构的加热,所述加热的温度范围为100~1200℃。本发明的基于石墨烯场效应管的微区加热方法,操作简单,可以实现不同尺寸的微区加热,并且加热区域可控。另外,微区加热结构的制备方法简单,与现有的MOS工艺兼容,制备的微区加热结构产量高、均匀性好。
-
公开(公告)号:CN103553029A
公开(公告)日:2014-02-05
申请号:CN201310534290.3
申请日:2013-10-31
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种基于竖直石墨烯的散热材料的制备方法,包括步骤:1)对生长衬底进行抛光处理并进行清洗;2)将所述生长衬底置于反应腔中,对所述反应腔进行抽真空后通入还原气体并升温至预设温度,然后对所述生长衬底进行等离子体预处理;3)采用等离子体增强化学气相沉积法于所述生长衬底表面生长竖直石墨烯薄膜;4)将制备出的竖直石墨烯薄膜转移至转移目标上。本发明充分发挥竖直石墨烯薄膜的水平薄膜层的横向散热与竖直方向较大的比表面积带来的纵向散热性,将高功率芯片水平方向的热量通过大的比表面积扩散至周围环境中,从而加快了散热效率。本发明研究了竖直石墨烯薄膜的转移技术,可以很方便的将竖直石墨烯薄膜应用于多种场合中。
-
公开(公告)号:CN113979429A
公开(公告)日:2022-01-28
申请号:CN202111215650.4
申请日:2021-10-19
Applicant: 中国科学院上海微系统与信息技术研究所 , 江苏云涌电子科技股份有限公司
IPC: C01B32/186
Abstract: 本发明提供一种六方氮化硼表面扭转双层石墨烯及其制备方法,通过先对六方氮化硼衬底退火处理进行清洁,然后在六方氮化硼衬底表面涂覆辅助材料同时对该辅助材料进行加热及减量处理,使保留在六方氮化硼衬底上的辅助材料含量保持在合适的厚度范围内,通过选择合适的辅助材料种类以及合适的保留厚度,以辅助后续石墨烯的形核成长,然后再结合特定的催化气体材料实现在六方氮化硼衬底表面直接制备形成具有多转角的双层石墨烯。解决了六方氮化硼衬底表面石墨烯形核困难以及难以直接制备多转角的双层石墨烯的问题,为基于石墨烯的转角电子学研究提供基础。
-
公开(公告)号:CN108754608A
公开(公告)日:2018-11-06
申请号:CN201810669531.8
申请日:2018-06-22
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种镍铜(111)合金单晶薄膜的制备方法,包括以下步骤:S1,提供蓝宝石基片;S2,在蓝宝石基片的晶面Al2O3(0001)上沉积50‑5000nm厚的金属薄膜,得到沉积有镍铜合金的蓝宝石衬底,其中,该金属薄膜为镍原子占原子总数的1‑40%的由镍原子和铜原子组成的合金薄膜;S3,将蓝宝石衬底放入化学气相沉积炉中,在氩气和氢气的气体氛围中进行退火处理,得到(111)晶向的单晶薄膜。本发明还涉及一种根据上述的制备方法得到的镍铜(111)合金单晶薄膜。根据本发明的制备方法获得的镍铜(111)合金单晶薄膜,极大地提高石墨烯的性能,为下一步石墨烯在微电子领域中的应用奠定基础。
-
公开(公告)号:CN106058036B
公开(公告)日:2018-09-28
申请号:CN201610404295.8
申请日:2016-06-08
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种量子干涉器件结构及其制备方法,该结构包括:第一超导层;位于所述第一超导层之上的第一介电层;位于所述第一介电层之上的石墨烯或二维半导体薄膜层;位于所述石墨烯或二维半导体薄膜层之上的第二介电层;位于所述第二介电层之上的第二超导层;与所述石墨烯或二维半导体薄膜层接触的金属层。本发明的量子干涉器件结构以石墨烯或MoS2等半导体材料作为器件有效层,利用超导薄膜作为磁场屏蔽,可用于研究石墨烯、半导体等材料的各种量子霍尔效应特性,并可应用于利用该种特性的量子干涉器件及传感器等器件中。
-
公开(公告)号:CN105405965B
公开(公告)日:2018-09-25
申请号:CN201510908225.1
申请日:2015-12-09
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种高灵敏度石墨烯磁场传感器及其制备方法。涉及半导体技术领域,以干法转移的方法形成h‑BN—石墨烯—h‑BN的霍尔器件作为磁场传感器的核心结构,可以避免湿法转移工艺及图形化刻蚀、金属沉积工艺等对材料晶格造成的污染与破坏;以h‑BN作为衬底及封装层,有利于维持石墨烯载流子迁移率,并保护器件避免吸附空气中的O2、H2O及微粒,以提高器件电学性能;此外石墨烯与金属电极之间采用一维线接触的方式连接,将大大降低器件的接触电阻及功耗。
-
-
-
-
-
-
-
-
-