MEMS同振型三维组合水听器
    31.
    发明公开

    公开(公告)号:CN115265754A

    公开(公告)日:2022-11-01

    申请号:CN202211028088.9

    申请日:2022-08-25

    Applicant: 中北大学

    Abstract: 本发明为一种MEMS同振型三维组合水听器,属于水声传感器技术领域。该水听器包括圆球状封装舱,圆球状封装舱内设有控制电路板,控制电路板上集成有一支构成矢量通道的MEMS电容式三轴加速度计以及一支构成声压通道的MEMS电容式全向性麦克风,控制电路板上连接有输出信号缆和输入信号缆,圆球状封装舱内还设有上下对称设置的气体密封腔。该水听器集成了一款MEMS电容式三轴加速度计作为矢量通道、集成了一款MEMES全向性麦克风作为声压通道,大大减小了MEMS同振型三维组合水听器的体积,增加了MEMS同振型三维组合水听器的灵敏度。

    基于MEMS技术的磁感式电子听诊器探头

    公开(公告)号:CN111870275B

    公开(公告)日:2022-05-17

    申请号:CN202010720086.0

    申请日:2020-07-24

    Applicant: 中北大学

    Abstract: 本发明为一种基于MEMS技术的磁感式电子听诊器探头,解决了目前心音传感器存在灵敏度和信噪比相互制约的问题。本发明电子听诊器探头包括依次榫卯嵌套在一起的负压囊、心音探头壳体、连接体、芯片封装壳体、MEMS声传感器微结构和感应薄膜,感应薄膜上设置有磁体。本发明电子听诊器探头将心音信号从外界环境振动噪声中转化分离出来,进行专一性检测,降低了环境噪声对心音信号检测的影响,提高了其抗干扰能力,使得心音检测精准性提高。同时,由于传感器获取到的心音信号为原始信号,从而降低了后端信号处理电路和消噪算法的难度。

    基于拍型仿生纤毛的高灵敏度MEMS心音心电一体化检测传感器

    公开(公告)号:CN113331863A

    公开(公告)日:2021-09-03

    申请号:CN202110701358.7

    申请日:2021-06-24

    Applicant: 中北大学

    Abstract: 本发明为一种基于拍型仿生纤毛的高灵敏度MEMS心音心电一体化检测传感器,其包括主要由探头壳体、MEMS声传感器微结构、心音心电一体化电路和信号采集卡组成,MEMS声传感器微结构上设置有拍型仿生纤毛用于检测心音信号,探头壳体上的心电电极用于检测心电信号,二者将检测到的信号传输给心音心电一体化电路进行处理,处理后再传输给信号采集卡。本发明具有设计科学、结构合理、操作简便、携带方便、检测灵敏、成本低、可批量加工、心音心电同步检测等优点,和传统传感器探头相比检测心音与心电信号更加准确、快速和方便。

    一种可伪装微型变色机器人

    公开(公告)号:CN104816292B

    公开(公告)日:2016-08-24

    申请号:CN201510241866.6

    申请日:2015-05-13

    Applicant: 中北大学

    Abstract: 本发明具体为一种可伪装微型变色机器人,解决了现有机器人变色需人工远端控制存在操控性能较差的问题。包括聚二甲基硅氧烷壳体,聚二甲基硅氧烷壳体的中间层设置有聚二甲基硅氧烷微流通道,聚二甲基硅氧烷壳体内设置有位于其中心的两个腔体,其中一个腔体内设置有三个颜料盒和与伺服电机,另一个腔体内设置有TCS230颜色传感器、单片机,伺服电机的输出端与颜料盒连接,TCS230颜色传感器的输出端与单片机的输入端连通,单片机的输出端与伺服电机的输入端连接。本发明变色不再人工控制,不需要携带大量输入输出管道,变色过程采用三基色变色原理,操控性能得到了大幅提升,具有简单方便、实时变色的优点。

    MEMS高量程加速度传感器的封装方法

    公开(公告)号:CN102259827B

    公开(公告)日:2014-06-25

    申请号:CN201110173243.1

    申请日:2011-06-25

    Applicant: 中北大学

    Abstract: 本发明涉及传感器的封装技术,具体是一种MEMS高量程加速度传感器的封装方法。本发明解决了现有传感器封装技术抗高过载能力差、固有频率低、以及封装可靠性差的问题。MEMS高量程加速度传感器的封装方法,该方法是采用如下步骤实现的:a)阳极键合高硼硅玻璃基板;b)选取陶瓷基板;c)印制芯片焊盘及连接导线;d)将缓冲基板固定到不锈钢封装管壳中;e)焊接电缆引线;f)灌封不锈钢封装管壳;g)将不锈钢盖板缝接到不锈钢封装管壳上。本发明有效解决了现有传感器封装技术抗高过载能力差、固有频率低、以及封装可靠性差的问题,适用于MEMS高量程加速度传感器的封装。

    三轴矢量传感器及两轴矢量传感器的标定补偿方法

    公开(公告)号:CN101887068B

    公开(公告)日:2011-11-16

    申请号:CN201010192636.2

    申请日:2010-06-01

    Applicant: 中北大学

    Abstract: 本发明涉及矢量传感器的误差修正,具体是一种三轴矢量传感器及两轴矢量传感器的标定补偿方法。解决了现有多轴矢量传感器的标定补偿方法未同时兼顾引起测量误差的所有因素等问题,方法依照矢量传感器实测输出Sm、理论输出Se的关系式Sm=KSe+S0及误差系数矩阵K=K1K2,构建矢量传感器误差修正数学模型:K1、K2分别为三轴矢量传感器的灵敏度误差系数矩阵、三测量轴间不正交误差系数矩阵;以有效方法获得误差修正数学模型中的零偏S0、修正系数矩阵K-1,最终得到所测矢量传感器的误差修正数学模型,对矢量传感器的测量结果进行标定补偿。兼顾引起多轴矢量传感器测量误差的所有因素进行标定补偿,提高测量结果精度;过程简洁方便、对硬件设备没有过高要求,适用于多种矢量传感器。

    三轴矢量传感器及两轴矢量传感器的标定补偿方法

    公开(公告)号:CN101887068A

    公开(公告)日:2010-11-17

    申请号:CN201010192636.2

    申请日:2010-06-01

    Applicant: 中北大学

    Abstract: 本发明涉及矢量传感器的误差修正,具体是一种三轴矢量传感器及两轴矢量传感器的标定补偿方法。解决了现有多轴矢量传感器的标定补偿方法未同时兼顾引起测量误差的所有因素等问题,方法依照矢量传感器实测输出Sm、理论输出Se的关系式Sm=KSe+S0及误差系数矩阵K=K1K2,构建矢量传感器误差修正数学模型:K1、K2分别为三轴矢量传感器的灵敏度误差系数矩阵、三测量轴间不正交误差系数矩阵;以有效方法获得误差修正数学模型中的零偏S0、修正系数矩阵K-1,最终得到所测矢量传感器的误差修正数学模型,对矢量传感器的测量结果进行标定补偿。兼顾引起多轴矢量传感器测量误差的所有因素进行标定补偿,提高测量结果精度;过程简洁方便、对硬件设备没有过高要求,适用于多种矢量传感器。

    基于平面环形微腔的气体检测方法及气体传感器

    公开(公告)号:CN101419161A

    公开(公告)日:2009-04-29

    申请号:CN200810079658.0

    申请日:2008-10-24

    Applicant: 中北大学

    Abstract: 本发明涉及基于平面环形微腔的气体检测方法及气体传感器,主要特点是采用两个平面环形微腔与双锥光纤构成的耦合器,一个为检测气体耦合器,另一个为真空环境中耦合器;该气体检测方法是基于倏逝波对不同气体的吸收作用改变了透射光谱峰值的原理,利用待检测气体的检测气体耦合器所透射光谱与真空环境中耦合器所透射光谱进行对比,并由二者的光谱变化来实现检测待测气体的种类和浓度。由该方法设计的气体传感器具有响应时间短、结构相对简单,对于浓度极低的剧毒有害气体也有极高的灵敏性等优点。

    差分电容式传感器检测电路

    公开(公告)号:CN101149391A

    公开(公告)日:2008-03-26

    申请号:CN200710139662.7

    申请日:2007-10-27

    Applicant: 中北大学

    Abstract: 本发明涉及微弱信号检测技术,具体是一种差分电容式传感器检测电路。解决了现有差分电容式传感器的检测电路检测精度不高的问题,包括全波整流电路,所述全波整流电路包括集成运放U1B和三极管Q1,集成运放U1B的反相端经电阻R21与加法器的输出端out2相连,同相端经电阻R19、R20与加法器的输出端out2相连,反相端与其输出端之间连接有电阻R22,电阻R19、R20的连接节点与三极管Q1的集电极相连,三极管Q1的基极经电阻R17、R18与波形信号发生器的输出端out1相连,电阻R17、R18的连接节点经二极管D3接地。本发明结构合理,对差分电容式传感器产生的微弱信号的检测精度高,可靠性高。

Patent Agency Ranking