-
公开(公告)号:CN103775822A
公开(公告)日:2014-05-07
申请号:CN201410049129.1
申请日:2014-02-12
Applicant: 北京空间机电研究所
IPC: F17C5/06
Abstract: 本发明提出一种超纯气体全自动高精度充装系统,采用6N超纯气体全自动、高精度(质量精度优于0.5%)充装系统,包括超纯气源、超纯气体储罐、真空充装室、管路抽真空装置、真空室抽真空装置、废气回收处理装置、截止阀、加热带、制冷机、冷板、加热笼、科氏流量计、压力传感器、温度传感器、操作控制台。该系统所有管路、容器内壁均可加热除气和反复置换清洗,充装产品置于真空环境下充装以避免外部杂质气体反向渗透,保证了气体的超高纯度;通过加热控温装置及制冷装置准确控制充装系统各部分温度,保证充装管路各处压力及工质流量维持恒定,结合高测量精度的科氏流量计及全自动的充装流程最终实现了气体的高充装质量精度。
-
公开(公告)号:CN119098852A
公开(公告)日:2024-12-10
申请号:CN202411292800.5
申请日:2024-09-14
Applicant: 北京空间机电研究所
Abstract: 本发明提出一种适用于轻质大口径反射镜的力控轮式抛光工具,通过柔性控制的方法,在接触工件的瞬间以及运行过程中,恒力系统以柔性浮动方式,主动适应工件表面的尺寸变化,将力的大小始终控制在所需范围之内,保证加工过程中去除函数的稳定性,从而保证抛光过程中的稳定性。结合柔性加工装置,通过比例积分微分控制规律闭环恒力控制,对工件三维外形任何角度进行抛光打磨同时实现力控系统的快速响应;本发明设置轮式抛光工具转速传感器,在加工至轻质大口径反射镜边缘时,降低加工过程中的转速,从而有效的减少边缘效应。
-
公开(公告)号:CN114193468B
公开(公告)日:2024-11-29
申请号:CN202111505986.4
申请日:2021-12-10
Applicant: 北京空间机电研究所
IPC: B25J11/00 , B23K26/082 , B23K26/352 , B23K26/064
Abstract: 本发明提供了一种用于大口径光学元件的超快激光辅助研抛装置及方法,属于精密光学加工领域。将超快激光辅助研抛盘安装在数控机械臂末端,超快激光脉冲通过光纤传导至研抛盘中心开孔处,经过锥透镜整形为贝塞尔光束垂直入射工件表面;在研抛过程中,超快激光随研抛盘在光学元件表面同步运动,并利用扫描振镜使工件表面快速形成粗糙的微纳复合结构,在此基础上研抛盘绕偏心轴转动,带动磨料颗粒在具有疏松微纳复合结构的工件表面运动,从而大幅提升机械研抛的材料去除效率,同时能有效减小机械抛光产生的残余应力、裂纹和划痕等缺陷,实现大口径光学元件的高效、高质量研抛。
-
公开(公告)号:CN115480598B
公开(公告)日:2023-09-29
申请号:CN202210977493.9
申请日:2022-08-15
Applicant: 北京空间机电研究所
Abstract: 一种离子束加工过程中光学镜面温度控制方法及测控系统,属于高精度非球面光学制造领域。其中,此控制方法包括基于点热源在物体内的能量沉积理论,建立面热源能量沉积模型;根据面热源能量沉积模型,依次对光学零件镜面能量沉积过程进行静态分析及动态分析,优化离子源工艺参数;通过对光学加工过程的离散化设计或对循环的加工路径稀疏化处理,降低温度累积。通过应用此控制方法,可以实现离子束对温度敏感的高精度光学零件、组件级光学产品的高效、高精度加工。
-
公开(公告)号:CN116380419A
公开(公告)日:2023-07-04
申请号:CN202211604465.9
申请日:2022-12-13
Applicant: 北京空间机电研究所
Abstract: 本发明公开了一种检测两面共体大口径非球面反射镜光轴一致性的装置和方法,属于光学零件加工与检测技术领域。该装置包括干涉仪、2个CGH补偿器。在干涉检测光路中将两个非球面表面的光轴通过精密调整和严格标定后引出到CGH补偿器上,CGH特定区域发出平行光,经另一片CGH反射后在干涉仪中形成表征两片CGH补偿器夹角的干涉条纹,观察统计干涉条纹数量解算出两非球面的光轴一致性偏差。相对于传统干涉测量法检测光轴需要引出机械基准、使用经纬仪等高精度检测仪器,具有检测精度高、误差源少,检测成本低的优点。
-
公开(公告)号:CN106289318B
公开(公告)日:2019-02-15
申请号:CN201610609323.X
申请日:2016-07-28
Applicant: 北京空间机电研究所
IPC: G01C25/00
Abstract: 本发明提供了一种高轨大口径光学遥感器入光口外热流模拟方法,采用基于电加热器的吸收热流法代替了基于太阳模拟器的入射热流法;本发明为大口径光学遥感器空间热流模拟提供一种经济、有效、可实现性高的模拟方法,电加热器可直接粘贴在有辐射热流的部件上,可满足不同口径光学遥感器的需求,不受太阳模拟器光斑尺寸以及真空环境模拟室尺寸的限制。本发明解决了高轨大口径光学遥感器遮光罩空间热流模拟问题,且该模拟方法简单有效,工程可实现性高。
-
公开(公告)号:CN106444917A
公开(公告)日:2017-02-22
申请号:CN201610829069.4
申请日:2016-09-18
Applicant: 北京空间机电研究所
CPC classification number: Y02B30/765 , G05D23/303 , F25B21/04 , F25B49/00 , F28D15/02 , F28D2021/0021 , F28F21/084
Abstract: 本发明涉及一种航天周期性工作热源的低功耗高精度控温装置,属于航天领域周期性工作热源的温度控制技术领域,尤其适用于周期性工作热源工作时间短、不工作时间长的情况。由热电制冷器、相变热管、散热板、温度传感器、控制电路组成。热电制冷器的冷面与热源连接,热面与相变热管的一端连接,相变热管的另一端与散热板连接。热电制冷器、控制电路与粘贴在热源上的温度传感器组成的主动控温回路根据热源温度决定热电制冷器正向工作制冷或反向工作制热。本发明具有功耗低,散热面积小的特点。
-
公开(公告)号:CN105910479A
公开(公告)日:2016-08-31
申请号:CN201610243303.5
申请日:2016-04-18
Applicant: 北京空间机电研究所
CPC classification number: F28D15/0266 , F28D15/043 , F28D15/06
Abstract: 一种控温型环路热管的蒸发器组件,包括热补偿器、N片蒸发单元以及连接管路,其中N为不小于1的正整数。热补偿器位于输入端,将环路热管中的液体工质加热至气、液两相态,N片蒸发单元通过连接管路连接构成蒸发网络,所述蒸发网络的输入端通过连接管路与热补偿器的输出端连接,蒸发网络的输出端作为蒸发器组件的输出端。本发明的蒸发器组件可保证在环路热管运行时进入各蒸发单元内的工质均为两相态工质,保证被控热源工作/非工作时温度恒定、一致,达到全周期精确控制其温度的目的。
-
公开(公告)号:CN104803012B
公开(公告)日:2016-08-24
申请号:CN201510134686.8
申请日:2015-03-25
Applicant: 北京空间机电研究所
IPC: B64G7/00
Abstract: 一种高轨光学遥感器真空热试验外热流模拟方法,首先根据光学遥感器(3)的在轨太阳吸收率确定太阳辐射热流。其次将光学遥感器(3)置于真空环境模拟室(1)内,然后通过光学系统在一个轨道周期内吸收的太阳辐射热流Q1(t)是否为0确定‘日凌’时段,将Q1(t)≠0的时间段确定为‘日凌’时段,采用太阳模拟器(2)与电加热器结合的模拟方案进行外热流模拟,将Q1(t)=0的时间段确定为非‘日凌’时段,采用单独电加热器的模拟方案进行外热流的模拟。本发明方法解决了现有非接触式空间光学遥感器外热流模拟方法不具备太阳光谱能量谱段特性和方向性问题,可准确模拟遥感器在轨所受太阳光谱的能量分布,模拟准确性高且易于工程实现。
-
公开(公告)号:CN114435957B
公开(公告)日:2024-05-03
申请号:CN202111581820.0
申请日:2021-12-22
Applicant: 北京空间机电研究所
Abstract: 本发明提供了一种适用于超大口径轻质反射镜的磁悬浮式重力卸载机构及方法,包括底座、设置在底座上的可移动电磁铁、可升降电机、嵌在反射镜背面的固定电磁铁、磁力吸盘以及磁力吸盘架;磁力吸盘与固定电磁铁之间产生吸力,实现吊装转运功能;可移动电磁铁与固定电磁铁之间产生斥力,从而提供支持力实现重力卸载。本发明完全颠覆原有卸载支撑形式,提出运用磁悬浮原理提供卸载力,不受反射镜镜坯背面轻量化结构设计的限制,可以进行灵活的重力卸载设计,卸载精度高。
-
-
-
-
-
-
-
-
-