54度~62度入射使用的宽谱脉宽压缩光栅

    公开(公告)号:CN111580205B

    公开(公告)日:2021-07-27

    申请号:CN202010488461.3

    申请日:2020-06-02

    Abstract: 一种适用于54度~62度入射使用的宽谱脉宽压缩光栅,包括衬底以及所述衬底上的弦形光栅结构。所述弦形光栅结构的外形轮廓可由特定公式进行定义。所述的弦形光栅结构包括光敏材料光栅层和覆盖在光敏材料光栅层上的金属层。所述光栅的周期Λ为600~750纳米,占空比f1为0.4~1。所述弦形光栅层结构的槽深h为170~260纳米。所述金属层材料为金或者银(Au/Ag),其厚度为100~220纳米。本发明的光栅中心波长为910纳米,在入射角θ为大角度54度~62度入射时,光栅的TM偏振光的‑1级衍射效率在200纳米(810~1010纳米)以上带宽范围内大于90%。本发明中的脉宽压缩光栅在拍瓦级啁啾脉冲压缩技术中具有重要的实用价值。

    一种基于光热折变玻璃的反射式体光栅制备方法

    公开(公告)号:CN110879433B

    公开(公告)日:2021-01-01

    申请号:CN201911167157.2

    申请日:2019-11-25

    Abstract: 一种基于光热折变玻璃的反射式体光栅制备方法,包括步骤:(1)曝光面进行精抛光;采用双束紫外平行光形成的干涉条纹对PTR玻璃进行曝光;采用450‑550℃的温度进行热显影;沿垂直于曝光入射面方向切割;对切割面精抛光处理后镀上对使用波长λ使透过率大于99.5%的全介质减反膜,完成反射式体光栅的制备。本发明通过调节曝光角度θ可实现对使用波长的调控,通过对曝光时长、热处理温度和时长实现对反射式体光栅的衍射效率(10%~99%)进行调控,通过切割厚度(0.3mm~30mm)调控实现对光谱半高宽(0.02nm~1nm)进行调控。通过工艺参数调节实现自由调控,且有利于实现规模化量产。

    高功率激光系统中反射光学元件的制备及其测温方法

    公开(公告)号:CN110736561A

    公开(公告)日:2020-01-31

    申请号:CN201911012197.X

    申请日:2019-10-23

    Abstract: 一种高功率激光系统中反射光学元件的制备及其测温方法,反射光学元件的制备包括步骤:在基底材料上利用磁控溅射镀制一层VO2相变薄膜;在VO2相变薄膜上镀制高反膜。由于VO2的相变特性,反射光学元件的透过率会随温度发生变化,高功率激光系统中测温方法包括利用接触式测温的方法测试反射光学元件在某一波长处透过率随温度变化的曲线;高功率激光系统中,增加该波长的探测激光入射至反射光学元件表面的辐照区域,并利用功率计测试探测激光的透过率;结合上述透过率随温度变化曲线利用透射率计算光学元件的表面温度。本发明相比红外热像仪测温的方法不仅成本较低,而且可以高精度的测试光学元件表面微米深度的温度变化。

    一种大占宽比亚波长周期光栅的制备方法

    公开(公告)号:CN114815025A

    公开(公告)日:2022-07-29

    申请号:CN202210596749.1

    申请日:2022-05-17

    Abstract: 一种大占宽比亚波长周期光栅结构制备方法,采用Bosch刻蚀技术在硅衬底上制备出侧壁带有锯齿状结构的光栅母版,使用纳米压印技术将光栅母版结构转移到压印胶中,然后采用镀膜技术沉积一层薄膜材料作为掩膜,最后通过lift‑off工艺将压印胶图形剥离并形成大占宽比光栅结构。本发明利用Bosch刻蚀技术形成的光栅侧面锯齿状结构替代传统负性光刻胶的倒梯形结构,避免了因镀膜过程中薄膜材料对光栅结构的包裹导致的lift‑off剥离困难问题,并解决了因负性光刻胶光刻胶分辨率不足导致的大占宽比、亚波长周期光栅结构制备难题,为大占宽比、亚波长周期光栅结构的制备提供了一种新的思路。

    高效主动换热光谱合束光栅集成化模块及其制备方法

    公开(公告)号:CN111854291A

    公开(公告)日:2020-10-30

    申请号:CN202010704210.4

    申请日:2020-07-21

    Abstract: 一种高效主动换热光谱合束光栅集成化模块及其制备方法,整个模块包括光栅结构层、光栅基板、微通道冷却层、导流层、密封板和冷却液进出口部分组成,首先利用高热导、低膨胀材料制备光栅基板、微通道冷却层和密封板,然后利用共晶焊料在真空焊炉中将所有部件焊接在一起并进行退火处理,随后对光栅基板再次抛光修正其面形,并最终在其表面完成合束光栅结构制备。本发明解决了传统的冷却方案因冷却模块和合束光栅相互独立而导致的整个光栅冷却模块装配复杂、体积大、重量重、冷却效果不理想的问题,十分有利于高功率光谱合束系统的小型化、轻量化。

Patent Agency Ranking