通过自适应信号调理测量周期变化辐射温度的方法

    公开(公告)号:CN104568165B

    公开(公告)日:2019-04-05

    申请号:CN201410752945.9

    申请日:2014-12-10

    Abstract: 本发明涉及一种通过自适应信号调理测量周期变化辐射温度的方法,属于辐射测温领域。其具体操作步骤为:①采集被测物体辐射能量的原始信号。②构造数字滤波器模型。③在步骤一操作的基础上,获取周期变化的原始信号的频率。④在步骤二和步骤三操作的基础上,根据周期变化的原始信号的频率,自动调整第一步中所构造的数字滤波器的参数。⑤在步骤四操作的基础上,使用参数调整之后的数字滤波器对原始信号进行滤波,并计算被测物体的温度。本发明提出的一种通过自适应信号调理测量周期变化辐射温度的方法与已有技术相比较,可以在被测物体频率变化的情况下,达到最优滤波效果;并实现了滤波的自动化处理。

    一种运动物体温场测量装置及温场合成方法

    公开(公告)号:CN104568225B

    公开(公告)日:2017-09-05

    申请号:CN201410752976.4

    申请日:2014-12-10

    Abstract: 本发明涉及测量领域,具体涉及一种运动物体温场测量装置及温场合成方法。扫描电机1通过固定座21固定于电机保护罩20内;探针外壳6与电机保护罩20固定连接;扫描电机1与推杆8固定连接;推杆8与连接器22连接;连接器22与扫描反射镜7相连;扫描反射镜7通过高温轴10安装在光学探头3前端,光学探头3安装在探针外壳6内;气缸组4和吹扫进气组件5套在探针外壳6的外部;光纤2连接在光学探头3尾部,光纤2还与电子盒26的输入端连接;电子盒26的输出端分别与数据处理模块25、气缸组4和扫描电机1的输入端连接。其优点是可以获得整个被测物体的温场分布情况;不需要拍摄到整个被测物体,适用范围更广;响应速度快,可测量高速运动的物体。

    一种基于三离轴抛物面镜和双参考黑体的发射率测量装置

    公开(公告)号:CN105738295A

    公开(公告)日:2016-07-06

    申请号:CN201610202075.7

    申请日:2016-04-01

    CPC classification number: G01N21/25

    Abstract: 本发明公开了一种基于三离轴抛物面镜和双参考黑体的发射率测量装置,包括:光谱仪(1)、高温黑体加热装置(2)、样品加热装置(3)、高温参考黑体(4)、低温参考黑体(5)、水平位移平台(6)、电控转台(7)、位移控制系统(8)、计算机(9)、光阑(10)、低温黑体加热装置(11)、离轴剖物面镜Ⅰ(12)、离轴剖物面镜Ⅱ(13)和离轴剖物面镜Ⅲ(14)。本发明实现了1μm~14μm的光谱范围、50℃~800℃温度范围的材料法向光谱发射率测量,该装置减小了仪器短期漂移及环境变化对于测量结果的影响,提高了测量的效率和测量不确定度。

    一种光谱发射率测量装置及表面温度测量方法

    公开(公告)号:CN114509165B

    公开(公告)日:2024-04-19

    申请号:CN202111563838.8

    申请日:2021-12-20

    Abstract: 本发明公开的一种光谱发射率测量装置及表面温度测量方法,属于辐射测温技术、发射率测量技术领域。本发明的装置主要由镜头和光谱仪或光谱辐射计组成,镜头与光谱仪或光谱辐射计可以直接连接,也可以使用光纤连接。无需其他任何额外的温度测量设备或传感器,仅使用发射率测量所需的、带有镜头的、光谱范围覆盖短波的光谱仪或光谱辐射计作为测量设备,使用3个及以上光谱辐射能量信息,根据普朗克黑体辐射定律建立目标温度与光谱辐射能量的关系,拟合温度T与光谱辐射能量Lλ、波长λ的关系式,即能够准确测算出目标的表面温度,从而获得目标的光谱发射率。本发明不仅能够简化测温设备,还能够提高目标光谱发射率的测量精度。

    一种带导流盖的高温共晶点坩埚

    公开(公告)号:CN111282608A

    公开(公告)日:2020-06-16

    申请号:CN202010233789.0

    申请日:2020-03-30

    Abstract: 本发明公开的一种带导流盖的高温共晶点坩埚,属于辐射测温中的高温共晶点技术领域。本发明包括坩埚盖、导流盖、石墨衬套和坩埚主体。导流盖内锥直径与衬套内径完全一致,根据预留的膨胀裕量计算内锥的高度,同时尽量保持内锥顶角与黑体腔顶角基本一致。本发明在导流盖的引导作用下,熔融态共晶体向上端空隙处流动,减小作用在坩埚盖上的推力,对坩埚主体与坩埚盖连接的位置起到保护。由于熔融态共晶体被引导至黑体腔上端的空隙,减小共晶体熔化后作用在黑体腔处的浮力差,从而在保护坩埚盖与坩埚主体连接处的同时,还能够对黑体腔起到保护作用。本发明具有内部结构简单、加工成本低的优点。

    一种可变压的高温材料热环境试验装置

    公开(公告)号:CN111220456A

    公开(公告)日:2020-06-02

    申请号:CN202010233831.9

    申请日:2020-03-30

    Abstract: 本发明公开的一种可变压的高温材料热环境试验装置,属于环境试验技术领域。本发明包括水冷承压腔、压力控制系统、加热芯、温度控制系统、水冷系统、待测材料或器件及其检测系统。水冷承压腔的外形采用圆柱结构主要由水冷密封前盖、水冷承压桶及承压腔后密封盖组成;水冷密封前盖上分布有压力控制器连接端口、限压阀、控温及加热电极、水冷接口;承压腔后密封盖为易拆装结构,用于压紧密封块,便于被测材料或装置更换。本发明采用在可变压环境中设置加热单元,并将承压结构改进为水冷承压结构,使试验温度及压力的上限极大提高,能够实现0~7MPa及300℃~1200℃条件下的可变压的高温材料热环境试验。本发明具有结构简单、易于实现的优点。

    一种基于直和模式的TDLAS线型拟合方法

    公开(公告)号:CN110426370A

    公开(公告)日:2019-11-08

    申请号:CN201910705177.4

    申请日:2019-08-01

    Abstract: 本发明公开的一种基于直和模式的TDLAS线型拟合方法,属于可调谐二极管吸收光谱(TDLAS)技术领域。本发明通过直和模式Voigt线型拟合TDLAS气体测量中吸收谱线线型,同时采用遗传算法对多变量最优值进行搜索,通过单一吸收谱线解算多个影响变量最优组合,得到最优TDLAS气体测量中吸收谱线线型。本发明能够解决传统卷积形式Voigt线型函数无解析表达式的问题;解决无法通过单一吸收谱线解算多个影响变量最优组合的问题。将本发明得到的最优TDLAS气体测量中吸收谱线线型应用于相关工程领域,解决相关工技术问题。所述相关工技术问题包括提高TDLAS线型拟合精度,应用于TDLAS燃气温度、组分浓度和流速测量。本发明能够提高线型拟合精度、拓宽TDLAS技术的应用范围。

    一种应用于多光谱测温仪的红外探测放大器

    公开(公告)号:CN110132427A

    公开(公告)日:2019-08-16

    申请号:CN201910439420.2

    申请日:2019-05-24

    Abstract: 本发明公开的一种应用于多光谱测温仪的红外探测放大器,属于信号放大和处理领域。本发明主要由多个铟镓砷光电探测器、具有多路输入输出的微弱电流信号放大电路构成;每个铟镓砷探测器的输出与微弱电流信号放大电路的其中一路输入直接相连;PCB板上输入电流信号走线和芯片的输入管脚进行保护环设计,防止漏电流的干扰;微弱电流信号放大电路具有4种不同的放大量程,其中10000000的量程由T网络实现负反馈大电阻值放大,其他量程的放大则由并联的电阻和电容负反馈网络直接实现,不同量程间通过开尔文开关的方法进行连接,电路根据输入的信号大小自动选择适配的量程,放大后的信号经过低通滤波电路进行滤波,滤波后的信号再经过差分放大器后输出。

    用于深腔式标准黑体发射率测试的球面镜能量采集系统

    公开(公告)号:CN109752829A

    公开(公告)日:2019-05-14

    申请号:CN201910210613.0

    申请日:2019-03-20

    Abstract: 本发明公开的用于深腔式标准黑体发射率测试的球面镜能量采集系统,属于发射率测量技术领域。本发明使用常见的球面镜进行能量采集系统,简单易行的实现能量采集;球面反射镜物平面与黑体腔深耦合,在黑体等温区内进行能量采集;球面镜视场与黑体腔耦合,避免源尺寸效应,提高采集信号信噪比;同时,球面镜反射角度保证不遮挡光路前提下尽量小,避免离轴状态下球面镜像差对能量采集的干扰。本发明要解决的技术问题是:提供一种利用球面镜进行能量采集的系统,实现对深腔式标准黑体发射率测试,具有加工设计经济方便的优点。

    一种负温及常温不透明材料发射率测量装置

    公开(公告)号:CN105784631B

    公开(公告)日:2018-10-30

    申请号:CN201610202887.1

    申请日:2016-04-01

    Abstract: 本发明公开了一种负温及常温不透明材料发射率测量装置。它包括,真空低温仓、低温恒温循环系统、光学系统、电控平移台和计算机控制与测量系统。其测量原理为利用探测器将被测目标与相同温度下的等温黑体的辐射能量进行测量和比较,从而得到材料在不同光谱下的光谱发射率。本发明可以实现7至13μm典型光谱范围、‑50℃~50℃温度范围的材料法向光谱发射率测量。所述光学系统和测量系统均处在真空低温环境中,避免了大气衰减对发射率测量影响,拓展了材料发射率测量的下限,提高了测量结果的不确定度。

Patent Agency Ranking