-
公开(公告)号:CN102147414B
公开(公告)日:2013-07-03
申请号:CN201010617918.2
申请日:2010-12-30
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01N33/68 , G01N33/532 , G01N33/543 , B81C1/00
Abstract: 本发明涉及一种基于纳米探针的微流体芯片检测微量蛋白的方法,其特征在于采用标准的光刻工艺实现微结构的制作,用玻璃片(点有DNA探针)与微结构封接制备了所需的微流体芯片;在纳米金颗粒上同时标记单克隆二抗及信号放大作用的Barcode DNA,并在磁珠上标记单克隆一抗;在微流体芯片管道内,通过抗原抗体免疫反应以及信号的逐级放大、银染显色,从而达到对微量目标蛋白的检测。所述的方法将生物样品的富集、分离和检测连接为一体,具有特异、快速和高灵敏的特点,可望应用于临床检验医学中微量蛋白(抗原或抗体)的诊断和检测。灵敏度可达pg/ml,比临床中普通的LEISA法提高了1000倍。
-
公开(公告)号:CN103058131A
公开(公告)日:2013-04-24
申请号:CN201210556630.8
申请日:2012-12-19
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: B81C3/00
Abstract: 本发明公开了一种高强度可逆键合微流控芯片的制作方法,所述方法首先利用牺牲层模具制作集成微管道结构的PDMS薄膜,并将PDMS薄膜结构面与一预先打孔的硬质基片对准贴合,然后将另一预先旋涂PDMS预聚体和固化剂混合液的硬质基片贴附于PDMS薄膜背面,并固化,制作完成完全无缝贴合的基片-PDMS-基片夹心式微流控芯片。最后,通过夹具从上下两面夹持夹心式微流控芯片的两片硬质基片,增强夹心式微流控芯片微管道结构耐受外加压强的能力。基于本发明制作的组合夹具的夹心式微流控芯片同时具备了可逆组装和抗高压的优势,大大地拓展了可逆键合微流控芯片的应用范围,降低了微流控芯片的应用成本。
-
公开(公告)号:CN101486004B
公开(公告)日:2012-06-13
申请号:CN200810207350.X
申请日:2008-12-19
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明公开了一种微流体自动定量分配的方法及装置,所述方法利用微米尺度下占主导地位的液体表面张力结合另一互不相溶流体的流动剪切作用,使样品液体充满并坐落于一定体积微腔中,从而实现样品液体的定量分配;实施上述方法的装置由包含至少一条微通道和一组微腔的微流控芯片构成,其中微腔位于微通道侧并与其相通,微通道中样品液体通过表面张力进入并充满微腔,然后利用另一互不相溶流体的流动剪切作用移除通道中多余样液,恰留微腔中充满样品液体,从而实现样品液滴的定量和分配。本发明提供了一种简单、快速、高通量的微流体自动定量分配方法和装置,可应用于微生化反应器和芯片实验室。
-
公开(公告)号:CN101067621A
公开(公告)日:2007-11-07
申请号:CN200710041619.7
申请日:2007-06-05
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种基于微加工方法制作的微型固相萃取芯片及使用方法。该芯片包括至少一个盖层和一个管道层,所述管道层通过微加工形成至少一段固相萃取填料填充管道和一段过滤管道,其中固相萃取填料填充管道通过坝型结构或栅栏结构与相邻管道部分分隔,但保持与相邻管道部分气相和液相的连通性,过滤管道部分由光引发聚合物形成的微孔结构构成;同时所述管道层对应固相萃取填料填充管道区域背面加工有微型加热电极和温度感应电极,用于加热控温。本发明可应用于分析化学和生物化学领域的微量样品快速萃取。
-
公开(公告)号:CN101968131B
公开(公告)日:2013-04-24
申请号:CN201010289621.8
申请日:2010-09-21
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明公开了一种基于相替换触发的毛细微阀及其应用,所述微阀为一种单向被动阀,由进样微管道上一段横截面突变的微管道或微腔体和一条与其相连的油相填充微管道构成。当水相样品流经管道横截面突变处时,表面张力作用其前端水相/气相界面的曲率发生变化,导致水相流体所受反向压强增加,当此反向压强与水相样品驱动压达到平衡时,即可实现对水相样品的控制限流作用,发挥阀的关闭功能;若通过油相填充管道导入油样,以油相替代处于限流平衡状态水相样品前界面的气相,则水相前界面的表面张力将降低,从而降低水相前界面所受反向压力,实现阀的开启功能。提供的毛细微阀,可应用于微生化反应器和芯片实验室。
-
公开(公告)号:CN101950126B
公开(公告)日:2012-08-29
申请号:CN201010275953.0
申请日:2010-09-08
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明公开了一种基于SU-8厚光刻胶的三维圆滑曲面微结构的制作方法,其特征在于所述的方法以聚二甲基硅氧烷(polydimethylsiloxane,PDMS)压模技术结合未交联SU-8光刻胶的回流特性制作具有圆滑曲面特征的微结构。首先通过光刻工艺制作SU-8原模,并以此原模浇注PDMS形成母模,然后利用压模技术将此PDMS母模转制成SU-8阳模,剥离PDMS模具后,将此未经曝光交联反应的SU-8阳模置于高温(55℃~120℃)环境下回流,形成具有圆滑曲面特征的三维微结构。本发明提出的圆滑曲面微结构的制作方法相对于传统的灰阶掩膜技术、发散光曝光技术和正性光刻胶回流方法,具有加工简便、成本低廉、结构稳固、结构曲率范围更大等特点。
-
公开(公告)号:CN102147414A
公开(公告)日:2011-08-10
申请号:CN201010617918.2
申请日:2010-12-30
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01N33/68 , G01N33/532 , G01N33/543 , B81C1/00
Abstract: 本发明涉及一种基于纳米探针的微流体芯片检测微量蛋白的方法,其特征在于采用标准的光刻工艺实现微结构的制作,用玻璃片(点有DNA探针)与微结构封接制备了所需的微流体芯片;在纳米金颗粒上同时标记单克隆二抗及信号放大作用的Barcode DNA,并在磁珠上标记单克隆一抗;在微流体芯片管道内,通过抗原抗体免疫反应以及信号的逐级放大、银染显色,从而达到对微量目标蛋白的检测。所述的方法将生物样品的富集、分离和检测连接为一体,具有特异、快速和高灵敏的特点,可望应用于临床检验医学中微量蛋白(抗原或抗体)的诊断和检测。灵敏度可达pg/ml,比临床中普通的LEISA法提高了1000倍。
-
公开(公告)号:CN101148324B
公开(公告)日:2010-05-19
申请号:CN200710045997.2
申请日:2007-09-14
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种基于ITO玻璃基底的细胞培养芯片的制备方法及其应用,制备:以ITO玻璃为基质材料;在ITO玻璃未溅射ITO薄膜的一侧甩涂AZ4620光刻胶,曝光、显影;将PDMS单体、固化剂混合,浇注在ITO薄膜一侧,加热固化;将ITO玻璃置于腐蚀液中,刻蚀;剥离ITO薄膜上的PDMS;制备PDMS薄膜;PDMS薄膜和已刻蚀微管道的ITO玻璃在氧等离子体作用下键合得到细胞培养芯片;再在ITO玻璃未键合PDMS薄膜的一侧连入外部温度控制系统。该芯片克服PDMS芯片的疏水性问题和玻璃材质芯片的加工工艺复杂问题,并且便于直接控制芯片温度,可应用于细胞迁移、细胞分化、细胞之间相互作用研究。
-
公开(公告)号:CN101659391A
公开(公告)日:2010-03-03
申请号:CN200910195109.4
申请日:2009-09-04
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明公开了一种圆滑曲面微结构的制作方法,其特征在于所述的方法以负性化学放大光刻胶(chemically amplified photoresist)为圆滑曲面微结构的制作材料,首先在基片上旋涂第一层负性化学放大光刻胶,并软烘、曝光,然后直接在第一层负性化学放大光刻胶上旋涂第二层负性化学放大光刻胶,并进行后烘;利用后烘过程中第一层光刻胶曝光后产生的光酸各向同性扩散,催化曝光区域及其相邻扩散区域光刻胶分子交联,显影后制得具有圆滑曲面特征的微结构。本发明提出的圆滑曲面微结构的制作方法相对于传统的灰阶掩膜技术和光刻胶回流方法,具有加工简便、成本低廉、结构稳固等特点。
-
公开(公告)号:CN101486004A
公开(公告)日:2009-07-22
申请号:CN200810207350.X
申请日:2008-12-19
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明公开了一种微流体自动定量分配的方法及装置,所述方法利用微米尺度下占主导地位的液体表面张力结合另一互不相溶流体的流动剪切作用,使样品液体充满并坐落于一定体积微腔中,从而实现样品液体的定量分配;实施上述方法的装置由包含至少一条微通道和一组微腔的微流控芯片构成,其中微腔位于微通道侧并与其相通,微通道中样品液体通过表面张力进入并充满微腔,然后利用另一互不相溶流体的流动剪切作用移除通道中多余样液,恰留微腔中充满样品液体,从而实现样品液滴的定量和分配。本发明提供了一种简单、快速、高通量的微流体自动定量分配方法和装置,可应用于微生化反应器和芯片实验室。
-
-
-
-
-
-
-
-
-