-
公开(公告)号:CN103347025B
公开(公告)日:2015-12-23
申请号:CN201310287520.0
申请日:2013-07-10
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
Abstract: 本发明公开了一种空间飞行器的遥测数据处理方法,空间飞行器按照数据协议将数据量小的一组或多组遥测数据通过一个数据帧发送至地面;空间飞行器按照数据协议将数据量大的一组遥测数据通过多个数据帧发送至地面;地面根据数据协议对接收的数据进行处理获得有效数据帧;并根据有效数据帧的数据包标识查找与该有效数据帧对应的解析规则表,所述解析规则表存储了对有效数据帧中的遥测数据所进行的操作,以及有效数据帧中的遥测数据所写入的数据文件;根据解析规则表中的操作以及所写入的数据文件对有效数据帧进行处理,最终将遥测数据写入与之对应的数据文件中。在大数据量和小数据量遥测数据均有的情况下,本发明的处理方法能够准确地将遥测数据写入对应的数据文件中。
-
公开(公告)号:CN114200950B
公开(公告)日:2023-06-02
申请号:CN202111248696.6
申请日:2021-10-26
Applicant: 北京航天自动控制研究所
IPC: G05D1/08
Abstract: 本发明公开了飞行姿态控制方法,属于机器学习技术领域,方法包括:构建飞行姿态控制律的学习所需的探索环境;根据所述探索环境输出的姿态角、姿态角速度,以及期望姿态角指令,构建所述飞行姿态控制律的学习所需的输入信号;将从所述飞行姿态控制律得到的舵机理论输出指令输入至舵机限幅单元,获取所述舵机限幅单元的输出结果,并将所述输出结果输入至所述探索环境;构建奖励回报单元,所述奖励回报单元反馈所述探索环境的姿态角的当前时刻奖励至所述飞行姿态控制律,并通过最大化总奖励优化所述飞行姿态控制律的学习;对所述飞行姿态控制律进行学习,获取最终的飞行姿态控制律,基于所述飞行姿态控制律对飞行姿态进行控制。
-
公开(公告)号:CN115809691A
公开(公告)日:2023-03-17
申请号:CN202211585769.5
申请日:2022-12-10
Applicant: 北京航天自动控制研究所
Inventor: 王晓峰 , 李晓敏 , 周辉 , 赵雄波 , 盖一帆 , 蒋彭龙 , 路坤锋 , 李超然 , 谢宇嘉 , 吴敏 , 林平 , 董文杰 , 吴松龄 , 弥寒光 , 黄鹂 , 赵冠杰 , 林玉野 , 李杨珺 , 王森 , 李杰 , 杨庆军 , 靳蕊溪
IPC: G06N3/063 , G06F17/16 , G06N3/0464
Abstract: 本公开属于神经网络加速计算技术领域,具体而言涉及一种基于Winograd的相关算法加速器计算方法,包括:获取基准张量块和实时张量块;通过Winograd变换由基准张量块得到第一张量块,由实时张量块得到第二张量块;通过张量块逐点相乘由第一张量块和第二张量块得到第三张量块;沿通道方向累加所述第三张量块,得到第一矩阵;通过Winograd反变换由第一矩阵得到第二矩阵;逐点相加第二矩阵和偏执矩阵,得到过程矩阵;将所述过程矩阵输入至过程张量缓存中,遍历结束后输出。上述过程提高计算速率和计算连续性。
-
公开(公告)号:CN115759220A
公开(公告)日:2023-03-07
申请号:CN202211584828.7
申请日:2022-12-10
Applicant: 北京航天自动控制研究所
Inventor: 王晓峰 , 周辉 , 赵雄波 , 盖一帆 , 蒋彭龙 , 路坤锋 , 李晓敏 , 李超然 , 谢宇嘉 , 林平 , 董文杰 , 吴松龄 , 弥寒光 , 黄鹂 , 吴敏 , 赵冠杰 , 李杨珺 , 王森 , 李杰 , 徐天运 , 靳蕊溪 , 林玉野
Abstract: 本公开属于人工智能处理器技术领域,具体而言涉及一种基于Winograd的深度学习处理系统,包括:输入通道,与外部设备通信;输入特征加载器,与所述输入通道相连;路由模块,与所述输入层加载器相连;卷积加速器核心模块,与路由模块相连,所述卷积核加速器核心模块包括至少两个并行设置的卷积核加速器子核心模块;通道累加器,与卷积加速器核心模块相连,用于累加并行的卷积核加速器子核心模块的输出数据;特征卸载器,与通道累加器相连,将所述通道累加器的输出数据传输至处理系统外。通过多尺寸Wino‑DPU混合架构,通过核间算力的最优分配,实现Wino‑DPU灵活性和高效性的全面提升,进而有效提升深度学习算法的计算效率。
-
公开(公告)号:CN103335648B
公开(公告)日:2015-11-11
申请号:CN201310263229.X
申请日:2013-06-27
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
IPC: G01C21/02
Abstract: 本发明公开了一种自主星图识别方法,给出了观测星模式建立方法,将星点坐标引入了星的模式,并用同样的方法建立导航星模式数据库;并提出了一种模式匹配的方法,首先判断模式一是否匹配,在模式一匹配成功的条件下,再判断模式二是否匹配……,这种逐次判断的方法提高了识别的速度,而在模式三,也就是标准坐标匹配时,引入匹配门限,根据星敏感器的使用精度,可以方便的调整该门限值的大小,不影响需要的存储空间和处理时间,便于工程应用。
-
公开(公告)号:CN103347025A
公开(公告)日:2013-10-09
申请号:CN201310287520.0
申请日:2013-07-10
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
Abstract: 本发明公开了一种空间飞行器的遥测数据处理方法,空间飞行器按照数据协议将数据量小的一组或多组遥测数据通过一个数据帧发送至地面;空间飞行器按照数据协议将数据量大的一组遥测数据通过多个数据帧发送至地面;地面根据数据协议对接收的数据进行处理获得有效数据帧;并根据有效数据帧的数据包标识查找与该有效数据帧对应的解析规则表,所述解析规则表存储了对有效数据帧中的遥测数据所进行的操作,以及有效数据帧中的遥测数据所写入的数据文件;根据解析规则表中的操作以及所写入的数据文件对有效数据帧进行处理,最终将遥测数据写入与之对应的数据文件中。在大数据量和小数据量遥测数据均有的情况下,本发明的处理方法能够准确地将遥测数据写入对应的数据文件中。
-
公开(公告)号:CN115827553A
公开(公告)日:2023-03-21
申请号:CN202211584357.X
申请日:2022-12-10
Applicant: 北京航天自动控制研究所
Inventor: 王晓峰 , 周辉 , 谢宇嘉 , 赵雄波 , 盖一帆 , 蒋彭龙 , 路坤锋 , 李晓敏 , 李超然 , 林平 , 赵冠杰 , 董文杰 , 吴松龄 , 弥寒光 , 黄鹂 , 吴敏 , 林玉野 , 李杨珺 , 王森 , 李杰 , 徐天运 , 靳蕊溪
IPC: G06F15/78 , G06F13/40 , G06N3/0464 , G06N3/063
Abstract: 本发明涉及一种面向CNN加速计算的带宽自适应的数据传输方法,包括:通过主控向指令配置模块从外部存储装置中写入输入特征图的基本信息;地址自动生成模块根据配置信息生成每次传输的地址信息,并将该地址信息传输给AX I驱动模块;AXI驱动模块根据配置信息和地址自动生成模块的信息,发起数据块的读取操作,并将数据写入自动插值模块;AX I数据感知模块感知通道信号的占空比,以及占空比的变化速率,并将该信息反馈给AXI驱动模块;自动插值将预定值插入数据流的预定位置,并将插值后的数据写入F I FO驱动模块;F I FO驱动模块根据F I FO的状态确定数据的读取和写入操作。通过上述方法提高加速核与外部存储装置之间的数据传输效率。
-
公开(公告)号:CN115796253A
公开(公告)日:2023-03-14
申请号:CN202211585982.6
申请日:2022-12-10
Applicant: 北京航天自动控制研究所
Inventor: 王晓峰 , 周辉 , 路坤锋 , 赵雄波 , 盖一帆 , 蒋彭龙 , 李晓敏 , 李超然 , 谢宇嘉 , 赵冠杰 , 林平 , 董文杰 , 吴松龄 , 弥寒光 , 黄鹂 , 吴敏 , 李杨珺 , 王森 , 李杰 , 徐天运 , 靳蕊溪 , 林玉野
IPC: G06N3/063 , G06F5/06 , G06N3/0464
Abstract: 本发明涉及一种带宽自适应的数据传输的卷积神经网络加速计算系统,包括卷积神经网络加速器,用于执行具体的数据计算;以及带宽自适应数据传输装置,设置在所述卷积神经网络加速器和外部存储装置之间,感知卷积神经网络加速器的数据消耗和生成速率、感知外部存储装置带宽的占用情况;根据感知数据确定卷积神经网络加速器和所述外部存储装置之间的数据传输策略;所述带宽自适应数据传输装置包括数据加载模块和数据卸载模块。通过上述结构可动态适应片外存储带宽,可大幅提升数据传输的连续性,从而有效提升卷积神经网络加速器的片外数据传输带宽。
-
公开(公告)号:CN115759235A
公开(公告)日:2023-03-07
申请号:CN202211602462.1
申请日:2022-12-10
Applicant: 北京航天自动控制研究所
Inventor: 王晓峰 , 谢宇嘉 , 周辉 , 赵雄波 , 盖一帆 , 路坤锋 , 蒋彭龙 , 李晓敏 , 李超然 , 董文杰 , 林平 , 吴松龄 , 弥寒光 , 黄鹂 , 吴敏 , 赵冠杰 , 王森 , 李杨珺 , 杨庆军 , 靳蕊溪 , 林玉野 , 李杰
IPC: G06N3/08
Abstract: 本公开属于神经网络处理方法技术领域,具体而言涉及一种基于Winograd的深度学习处理方法,包括:获取待计算单元的大小;获取多个具有不同尺寸的加速核的大小;根据多个加速核的大小得到计算比例;根据待计算单元的大小和计算比例得到待计算单元的划分区域,所述待计算单元的划分区域与加速核的大小相对应;根据划分区域进行计算,然后汇总完成所述待计算单元的加速计算。本公开利用不同卷积核尺寸和输出尺寸的Winograd加速核(Wino‑Core)在灵活性和高效性方面的差异性,在高度可扩展的深度学习处理器架构中组合多个不同尺寸的Wino‑Core,形成多核混合异构的深度学习处理器,并通过核间算力的最优分配,实现Wino‑DPU灵活性和高效性的全面提升。
-
公开(公告)号:CN114200950A
公开(公告)日:2022-03-18
申请号:CN202111248696.6
申请日:2021-10-26
Applicant: 北京航天自动控制研究所
IPC: G05D1/08
Abstract: 本发明公开了飞行姿态控制方法,属于机器学习技术领域,方法包括:构建飞行姿态控制律的学习所需的探索环境;根据所述探索环境输出的姿态角、姿态角速度,以及期望姿态角指令,构建所述飞行姿态控制律的学习所需的输入信号;将从所述飞行姿态控制律得到的舵机理论输出指令输入至舵机限幅单元,获取所述舵机限幅单元的输出结果,并将所述输出结果输入至所述探索环境;构建奖励回报单元,所述奖励回报单元反馈所述探索环境的姿态角的当前时刻奖励至所述飞行姿态控制律,并通过最大化总奖励优化所述飞行姿态控制律的学习;对所述飞行姿态控制律进行学习,获取最终的飞行姿态控制律,基于所述飞行姿态控制律对飞行姿态进行控制。
-
-
-
-
-
-
-
-
-