Abstract:
A method for producing crystalline α-Fe2O3 nanoparticles involving ultrasonic treatment of a solution of an iron (III)-containing precursor and an extract from the seeds of a plant in the family Linaceae. The method involves preparing an aqueous extract from the seeds of a plant in the family Linacae and dropwise addition of the extract to the solution of an iron (III)-containing precursor. The method yields crystalline nanoparticles of α-Fe2O3 having a spherical morphology with a diameter of 100 nm to 300 nm, a mean surface area of 240 to 250 m2/g, and a type-II nitrogen adsorption-desorption BET isotherm with a H3 hysteresis loop. A method for the photocatalytic decomposition of organic pollutants using 10 the nanoparticles is disclosed. An antibacterial composition containing the crystalline α-Fe2O3 nanoparticles is also disclosed.
Abstract:
A method of manufacturing a diamond watch crystal wherein the present invention employs multiple techniques to produce the final product. The method of the present invention initiates with a chemical vapor deposition process wherein a high purity graphite is employed as the source substrate. This step further deploys utilization of gases, temperature and an energy source to facilitate formation of a diamond layer on the substrate. The present invention provides alternate energy sources during the chemical vapor deposition such as but not limited to, microwave plasma, direct current plasma, inductively-coupled plasma and hot filament techniques. The method of the present invention further deploys a high pressure high temperature step subsequent the chemical vapor deposition step. These two steps are repeated wherein the initial latter step includes a diamond seed. A final high pressure high temperature step is utilized to remove impurities prior to cutting and polishing.
Abstract:
In a crystal growth furnace having an array of vertically arranged heaters to provide controlled heating zones within a chamber, and a crucible for holding crystal material, wherein the crystal is grown vertically through the heating zones, the improvement includes a laser mounted outside the chamber which radiates a beam of energy to locally melt precipitates and inclusions. The furnace includes a mechanism to position the laser vertically to, at or near the interface between the formed crystal and crystal melt material above the formed crystal. The crystal material can be CdZnTe.
Abstract:
The present disclosure generally relates to compositions comprising substrate-free 2D tellurene crystals, and the method of making and using the substrate-free 2D tellurene crystals. The 2D tellurene crystals of the present disclosure are characterized by an X-ray diffraction pattern (CuKα radiation, λ=1.54056 A) comprising a peak at 23.79 (2θ±0.1°) and optionally one or more peaks selected from the group consisting of 41.26, 47.79, 50.41, and 64.43 (2θ±0.1°).
Abstract:
An apparatus for physical vapor transport growth of semiconductor crystals having a cylindrical vacuum enclosure defining an axis of symmetry; a reaction-cell support for supporting a reaction cell inside the vacuum enclosure; a cylindrical reaction cell made of material that is transparent to RF energy and having a height Hcell defined along the axis of symmetry; an RF coil provided around exterior of the vacuum enclosure and axially centered about the axis of symmetry, wherein the RF coil is configured to generate a uniform RF field along at least the height Hcell; and, an insulation configured for generating thermal gradient inside the reaction cell along the axis of symmetry. The ratio of height of the RF induction coil, measured along the axis of symmetry, to the height Hcell may range from 2.5 to 4.0 or from 2.8 to 4.0.
Abstract:
An air-stable, high-melt 1a-hydroxy-vitamin D3 compound, methods for preparing an animal feed composition, methods of preparing 1a-hydroxy-vitamin D3, methods of enhancing phytate phosphorus and calcium utilization, and an animal feed regime are provided.
Abstract:
An apparatus for physical vapor transport growth of semiconductor crystals having a cylindrical vacuum enclosure defining an axis of symmetry; a reaction-cell support for supporting a reaction cell inside the vacuum enclosure; a cylindrical reaction cell made of material that is transparent to RF energy and having a height Hcell defined along the axis of symmetry; an RF coil provided around exterior of the vacuum enclosure and axially centered about the axis of symmetry, wherein the RF coil is configured to generate a uniform RF field along at least the height Hcell; and, an insulation configured for generating thermal gradient inside the reaction cell along the axis of symmetry. The ratio of height of the RF induction coil, measured along the axis of symmetry, to the height Hcell may range from 2.5 to 4.0 or from 2.8 to 4.0.
Abstract:
A synthetic diamond body and method of making the synthetic diamond body are provided. The synthetic diamond body having a low stress and free of cracks may comprise a first single crystal partial volume having the first crystallographic orientation and a one or more of other single crystal partial volumes, wherein the first partial volume occupies less than about 100% of the total volume of synthetic diamond wafer, and each other single crystal partial volume has its own crystallographic orientation; and each other single crystal partial volume comprises a plurality of single crystal volumes all having about the same crystallographic orientation, wherein the crystallographic orientation of each partial volume is fixed against the first crystallographic orientation by a geometrical operation.
Abstract:
A synthetic diamond material comprising one or more spin defects having a full width half maximum intrinsic inhomogeneous zero phonon line width of no more than 100 MHz. The method for obtain such a material involves a multi-stage annealing process.
Abstract:
A method of treating a Ti-Ni shape memory alloy to improve their various characteristic properties. In a first step of the method, a wire of the shape memory alloy is held at a high temperature within a predetermined range to be turned into a solid solution, and thereafter, cooled, whereby plastic strain in it is removed and crystals of the alloy are grown. In a second step of the method, current pulse is passed through the wire to rapidly heat it to a temperature higher than its M.sub.f point to cause elongation due to transformation superplasticity to it. In a third step of the method, the application of the pulse is stopped, the wire is rapidly cooled to the temperature of its M.sub.f point or below, and tensile load is applied to the wire immediately after the stop of the application of the pulse to cause elongation to the wire again in a cooling process, and thereafter the load is removed or sufficiently decreases to stop the deformation when the value of m concerning the wire is sharply decreased. Then, the second and the third steps are repeated a required number of times.