-
公开(公告)号:US12114573B2
公开(公告)日:2024-10-08
申请号:US17685402
申请日:2022-03-03
发明人: Chia-Yun Chen , Kuan-Yi Kuo , Po-Hsuan Hsiao , Yi-Yin Lin
IPC分类号: H10N10/857 , C08K9/02 , C09D165/00 , H10N10/01 , H10N10/17
CPC分类号: H10N10/857 , C08K9/02 , C09D165/00 , H10N10/01 , H10N10/17 , C08K2201/011
摘要: A method for manufacturing a thermoelectric polymer film includes steps as follows. A conductive polymer liquid and a plurality of carbon nanotubes are mixed to form a mixture. The mixture is coated on a substrate to form a film precursor. Two electrode parts are arranged on the film precursor. An electric field is applied to the film precursor through the two electrode parts at a room temperature, so as to change an arrangement of the plurality of carbon nanotubes, such that the thermoelectric polymer film is formed.
-
公开(公告)号:US12114569B2
公开(公告)日:2024-10-08
申请号:US18061012
申请日:2022-12-02
发明人: Boris N. Feigelson , Kevin P. Anderson , Benjamin L Greenberg , James A. Wollmershauser , Alan G. Jacobs
IPC分类号: H10N10/01 , C04B35/117 , C04B35/488 , C04B35/626 , C04B35/628 , C04B35/64 , C09C1/28 , C09C3/00 , C09C3/04 , C09C3/06 , H10N10/852 , H10N10/857
CPC分类号: H10N10/01 , C04B35/117 , C04B35/488 , C04B35/6261 , C04B35/62813 , C04B35/62823 , C04B35/62884 , C04B35/64 , C09C1/28 , C09C3/006 , C09C3/041 , C09C3/043 , C09C3/063 , H10N10/852 , H10N10/857 , C01P2002/60 , C01P2002/88 , C01P2004/64 , C01P2006/32 , C01P2006/40 , C04B2235/3217 , C04B2235/3244 , C04B2235/428 , C04B2235/5445 , C04B2235/5454 , C04B2235/614 , C04B2235/781 , C04B2235/785 , C04B2235/9607
摘要: Thermoelectric (TE) nanocomposite material that includes at least one component consisting of nanocrystals. A TE nanocomposite material in accordance with the present invention can include, but is not limited to, multiple nanocrystalline structures, nanocrystal networks or partial networks, or multi-component materials, with some components forming connected interpenetrating networks including nanocrystalline networks. The TE nanocomposite material can be in the form of a bulk solid having semiconductor nanocrystallites that form an electrically conductive network within the material. In other embodiments, the TE nanocomposite material can be a nanocomposite thermoelectric material having one network of p-type or n-type semiconductor domains and a low thermal conductivity semiconductor or dielectric network or domains separating the p-type or n-type domains that provides efficient phonon scattering to reduce thermal conductivity while maintaining the electrical properties of the p-type or n-type semiconductor.
-
公开(公告)号:US20230110366A1
公开(公告)日:2023-04-13
申请号:US17856854
申请日:2022-07-01
发明人: David L. CARROLL , Chaochao DUN , Corey HEWITT , Robert SUMMERS
IPC分类号: H10N10/853 , C09K11/88 , H10N10/857
摘要: Composite nanoparticle compositions and associated nanoparticle assemblies exhibit enhancements to one or more thermoelectric properties including increases in electrical conductivity and/or Seebeck coefficient and/or decreases in thermal conductivity. A composite nanoparticle composition comprises a semiconductor nanoparticle including a front face and a back face and sidewalls extending between the front and back faces. Metallic nanoparticles are bonded to at least one of the sidewalls establishing a metal-semiconductor junction.
-
公开(公告)号:US11974504B2
公开(公告)日:2024-04-30
申请号:US17786269
申请日:2020-12-01
申请人: LINTEC Corporation
发明人: Yuta Seki , Kunihisa Kato , Tsuyoshi Muto
IPC分类号: H10N10/857 , H10N10/01 , H10N10/17
CPC分类号: H10N10/857 , H10N10/01 , H10N10/17
摘要: Provided are: a thermoelectric conversion body that has high electrical conductivity, achieving high thermoelectric conversion efficiency when used in a thermoelectric conversion module, and is less susceptible to warpage during manufacture; a method for manufacturing the same; and a thermoelectric conversion module using the same. A thermoelectric conversion body that is a fired product of a composition containing a thermoelectric semiconductor material and a heat resistant resin, wherein, with the heat resistant resin being subjected to temperature elevation and a weight of the heat resistant resin at 400° C. being defined as 100%, a temperature at which the heat resistant resin undergoes a further 5% reduction in weight is 480° C. or lower; a thermoelectric conversion module including the thermoelectric conversion body; and a method for manufacturing the thermoelectric conversion body.
-
公开(公告)号:US11903318B2
公开(公告)日:2024-02-13
申请号:US18077987
申请日:2022-12-08
发明人: Lon Bell , Douglas Crane
IPC分类号: H10N19/00 , H10N10/17 , H10N10/857
CPC分类号: H10N19/101 , H10N10/17 , H10N10/857
摘要: Provided herein is a thermoelectric element that includes a cold end, a hot end, and a p-type or n-type material having a length between the hot end and the cold end. The p-type or n-type material has an intrinsic Seebeck coefficient (S), an electrical resistivity (ρ), and a thermal conductivity (λ). Each of two or more of S, ρ, and λ generally increases along the length from the cold end to the hot end. The thermoelectric element may be provided in single-stage thermoelectric devices providing enhanced maximum temperature differences. The single-stage thermoelectric devices maybe combined with one another to provide multi-stage thermoelectric devices with even further enhanced maximum temperature differences.
-
公开(公告)号:US11716905B2
公开(公告)日:2023-08-01
申请号:US16449838
申请日:2019-06-24
发明人: Hyejin Moon , Ali Farzbod
IPC分类号: H10N10/857 , H10N10/00 , H10N10/85 , H10N15/00 , H10N10/851 , H10N15/10 , B01J31/02 , H01G9/20
CPC分类号: H10N10/857 , B01J31/0277 , B01J31/0298 , B01J2219/00047 , H01G9/2013 , H10N10/00 , H10N10/85 , H10N10/851 , H10N15/00 , H10N15/10
摘要: An electrochemical cell comprises a first electrode having a first inner surface; a second electrode having a second inner surface, the second inner surface facing the first inner surface; a nanostructured material positioned on at least one of the first inner surface and second inner surface; and an ionic liquid positioned between the first inner surface and the second inner surface, the ionic liquid being in electrical communication with the first electrode and second electrode.
-
公开(公告)号:US20230200244A1
公开(公告)日:2023-06-22
申请号:US18061012
申请日:2022-12-02
发明人: Boris N. Feigelson , Kevin P. Anderson , Benjamin L. Greenberg , James A. Wollmershauser , Alan G. Jacobs
IPC分类号: H10N10/857 , H10N10/01 , C04B35/117 , C04B35/488 , C04B35/628 , C04B35/64
CPC分类号: H10N10/857 , C04B35/64 , C04B35/117 , C04B35/488 , C04B35/62813 , C04B35/62823 , C04B35/62884 , H10N10/01 , C04B2235/428 , C04B2235/3217 , C04B2235/3244 , C04B2235/5445 , C04B2235/5454 , C04B2235/9607
摘要: Thermoelectric (TE) nanocomposite material that includes at least one component consisting of nanocrystals. A TE nanocomposite material in accordance with the present invention can include, but is not limited to, multiple nanocrystalline structures, nanocrystal networks or partial networks, or multi-component materials, with some components forming connected interpenetrating networks including nanocrystalline networks. The TE nanocomposite material can be in the form of a bulk solid having semiconductor nanocrystallites that form an electrically conductive network within the material. In other embodiments, the TE nanocomposite material can be a nanocomposite thermoelectric material having one network of p-type or n-type semiconductor domains and a low thermal conductivity semiconductor or dielectric network or domains separating the p-type or n-type domains that provides efficient phonon scattering to reduce thermal conductivity while maintaining the electrical properties of the p-type or n-type semiconductor.
-
公开(公告)号:US20230200243A1
公开(公告)日:2023-06-22
申请号:US18061007
申请日:2022-12-02
发明人: Boris N. Feigelson , Kevin P. Anderson , Benjamin L. Greenberg , James A. Wollmershauser , Alan G. Jacobs
CPC分类号: H10N10/857 , C09C1/28 , C09C3/006 , C09C3/041 , C09C3/043 , C09C3/063 , H10N10/01 , C01P2002/60 , C01P2002/88 , C01P2004/64 , C01P2006/32 , C01P2006/40
摘要: Thermoelectric (TE) nanocomposite material that includes at least one component consisting of nanocrystals. A TE nanocomposite material in accordance with the present invention can include, but is not limited to, multiple nanocrystalline structures, nanocrystal networks or partial networks, or multi-component materials, with some components forming connected interpenetrating networks including nanocrystalline networks. The TE nanocomposite material can be in the form of a bulk solid having semiconductor nanocrystallites that form an electrically conductive network within the material. In other embodiments, the TE nanocomposite material can be a nanocomposite thermoelectric material having one network of p-type or n-type semiconductor domains and a low thermal conductivity semiconductor or dielectric network or domains separating the p-type or n-type domains that provides efficient phonon scattering to reduce thermal conductivity while maintaining the electrical properties of the p-type or n-type semiconductor.
-
公开(公告)号:US12029128B2
公开(公告)日:2024-07-02
申请号:US17854343
申请日:2022-06-30
申请人: CRH Nederland B.V.
IPC分类号: H10N10/857 , C04B14/06 , C04B18/02 , C04B22/14 , C04B28/04 , C04B111/94 , H01B1/10 , H10N10/01
CPC分类号: H10N10/857 , C04B14/06 , C04B18/022 , C04B22/14 , C04B28/04 , H01B1/10 , H10N10/01 , C04B2111/94 , C04B2201/30
摘要: The present invention relates to a concrete composite comprising concrete and a thermoelectric material, wherein the thermoelectric material comprises a complex sulphide mineral, wherein the composite comprises at least 20 wt % concrete.
-
公开(公告)号:US20240177927A1
公开(公告)日:2024-05-30
申请号:US18433052
申请日:2024-02-05
IPC分类号: H01F41/14 , B22F10/25 , B22F10/38 , B32B1/00 , B32B3/02 , B32B3/26 , B32B3/30 , B32B5/14 , B32B5/16 , B32B7/025 , B32B7/027 , B32B15/04 , B33Y80/00 , C23C4/01 , C23C4/04 , C23C4/06 , C23C4/08 , C23C4/12 , C23C24/00 , C23C24/04 , C23C30/00 , H01F7/00 , H01F7/02 , H01F41/20 , H01F41/30 , H01F41/34 , H10N10/00 , H10N10/80 , H10N10/857 , H10N15/00 , H10N30/00 , H10N30/01 , H10N30/074 , H10N30/076 , H10N60/00 , H10N60/01 , B33Y10/00 , H10N10/01
CPC分类号: H01F41/14 , B22F10/25 , B22F10/38 , B32B1/00 , B32B3/02 , B32B3/26 , B32B3/30 , B32B5/14 , B32B5/142 , B32B5/145 , B32B5/16 , B32B7/025 , B32B7/027 , B32B15/04 , B32B15/043 , B33Y80/00 , C23C4/01 , C23C4/04 , C23C4/06 , C23C4/08 , C23C4/12 , C23C24/00 , C23C24/04 , C23C30/00 , C23C30/005 , H01F7/00 , H01F7/02 , H01F41/20 , H01F41/30 , H01F41/34 , H10N10/00 , H10N10/80 , H10N10/857 , H10N15/00 , H10N30/00 , H10N30/01 , H10N30/074 , H10N30/076 , H10N30/1051 , H10N60/00 , H10N60/01 , B22F2999/00 , B33Y10/00 , C22C2202/00 , H10N10/01 , Y10T428/12389 , Y10T428/12396 , Y10T428/12458 , Y10T428/12493 , Y10T428/12528 , Y10T428/12535 , Y10T428/12681 , Y10T428/24942 , Y10T428/249921 , Y10T428/26
摘要: A method, in accordance with one embodiment, includes forming an array of structures from a raw material via cold spray. Each of the structures is characterized by having a defined feature size in at least one dimension of less than 100 microns as measured in a plane of deposition of the structure, at least 90% of a theoretical density of the raw material, and essentially the same functional properties as the raw material. A method, in accordance with another embodiment, includes positioning a mask between a cold spray nozzle and a substrate, and forming a structure on the substrate by cold spraying a raw material from the cold spray nozzle. The structure has a shape corresponding to an aperture in the mask.
-
-
-
-
-
-
-
-
-