Abstract:
Methods and systems are provided for a motorized disconnect operable to selectively engage and disengage two rotating components of a vehicle drivetrain. As one example, a motorized disconnect system is provided that operates via an electric motor and includes a shifter assembly with an oscillating gear track and cam profile for rotating the shifter assembly while moving it in an axial direction to selectively couple two rotating components.
Abstract:
A method for releasing a tooth-on-tooth position of an interlocking shift element (6) of a transmission (5) or an interlocking shift element between two transmissions, such that the tooth-on-tooth position is released by using an actuator, in particular by using a transmission brake (8) or a drive clutch (7), and when a tooth-on-tooth position to be released is recognized, then depending on a drive-side or input-side rotational speed of the interlocking shift element (6), depending on a synchronous speed of the same and as a function of the actuators (3, 7, 8) available for releasing a tooth-on-tooth position, at least one actuator is selected, by using which the drive-side or input-side speed of the interlocking shift element (6) is approximated to its synchronous speed.
Abstract:
A braking force control apparatus for a vehicle is provided with a brake device that brakes a rotation of a drive wheel of a vehicle equipped with a continuously variable transmission and adjusts a magnitude of a braking force acting upon the drive wheel on the basis of a brake depression amount. The braking force control apparatus includes a controller that is configured to set an upper limit value of the braking force of the brake device when a restriction condition that is a condition, at which an excessively large torque input state occurs, has been estimated to be established, the excessively large torque input state being a state in which a reduced speed of the drive wheel based on the braking force is larger than an allowable limit speed.
Abstract:
A dynamic braking means for a variable speed dynamoelectric eddy current drive consists of an ac motor (4) rotationally coupled through a shaft (6) to an inductor drum assembly (13) of an eddy current coupling (3), where an annular field coil 12 generates an electromagnetic field which couples the inductor drum assembly to a pole assembly (10) which is rotationally coupled to an output shaft (16) which drives an inertial load (20). Upon command to stop and brake, a controller (30) signals a motor switch (26) to disconnect the ac motor from the ac source and connect it to a dc source, causing a braking torque to be produced. Concurrently, the controller signals a coupling switch (28) to go to an open position momentarily until the motor decelerates to approximately zero speed, whereupon the coupling switch is again closed, coupling the inertial load to the motor, thereby providing a braking action. The major portion of dissipated kinetic energy is thus shifted from motor to coupler, which has a higher heat capacity.
Abstract:
A powertrain includes an engine that has a crankshaft. A first motor-generator is drivingly connected to the crankshaft via an endless rotatable device. The powertrain includes a transmission that has a transmission input member driven by the crankshaft and a transmission output member. A front differential is operatively connected with front half shafts. A transfer case has a gearing arrangement configured to distribute torque of the transmission output member to the front differential and to a driveshaft. A rear differential is operatively connectable with the driveshaft, and is configured to transfer torque from the driveshaft to rear half shafts. A second motor-generator is drivingly connected to the rear differential. A controller is operatively connected to the second motor-generator, and controls the second motor-generator to function as a motor that provides torque to the rear wheels through the rear differential. A modular rear drive unit operatively connects to the vehicle body.
Abstract:
A claw clutch includes first and second rotors disposed coaxially with each other, and is switched between an engaged state engaging teeth of the rotors and a disengaged state releasing the engagement. An actuator moves either one of the rotors in an axial direction to switch the clutch between the states. A synchronization controlling unit controls an electric motor coupled to the second rotor to cause its rotation number to approach the rotation number of the first rotor when the clutch is switched to the engaged state. An engagement controlling unit that controls the actuator moves either one of the rotors to a position where the teeth are engaged before a difference in rotation speed between the rotors falls within a predetermined range and the rotation number of the second rotor reaches that of the first rotor when the clutch is switched to the engaged state.
Abstract:
A device for detecting a position of a moving body is provided in which a position of a moving body such as a window glass can be detected with high accuracy, initial positions can be set without complicated adjustment, such can be realized with a simple structure and at a low cost, and assemblability can be greatly improved. In the device for detecting a position of a moving body, spring claws, which form a clutch mechanism and press a carrier, are formed integrally with a protective plate. A switch portion including a moving contact is provided integrally with a ring gear of the planetary gear group and rotates therewith. The switch portion detects the position of the moving body by on-and-off operation thereof. The spring claws are provided at a side of a planetary gear group (a planetary gear and the carrier) opposite a side at which a cover plate is provided. Accordingly, the protective plate can be installed after the planetary gear group. In a state in which the planetary gear and the carrier are provisionally installed, press-contact force of the spring claws is not applied to the carrier. As a result, the planetary gear and the carrier do not rise and positional deviation does not occur, and therefore, the assemblability can be greatly improved.
Abstract:
An electromagnetic spring clutch comprises a driving member, to be driven by a belt, and a driven member, which is connected to a load shaft, and to which revolving power is to be transmitted from the driving member by a clutching coil spring.One end of the coil spring is fixed to the driving member and the other end is fixed to a rotor which is freely rotatable and has several rotor windings, each shortcircuited.A stator having several windings to be excited by a power source is disposed closely parallel to the rotor for electromagnetically braking it, to thus twist the coil spring and make it grip the driven member.
Abstract:
A control circuit for controlling the shaft speed of a motor having clutch and brake devices comprises a speed detector for detecting the actual rotating speed of the motor and generating a first pulse signal having a period in inverse proportion to the actual rotating speed, a speed selector for setting the desired-speed of the shaft, a signal generator for generating a second pulse signal having a period in inverse proportion to the desired-speed from the speed selector, a first means for detecting the ratio of the period of the first signal to the period of the second signal, and a second means for controlling the operation of the clutch and brake devices in response to the detected ratio.
Abstract:
A power transmission device includes: a planetary gear mechanism; a first rotary machine connected to a sun gear of the planetary gear mechanism; an engine and a one-way clutch that are connected to a carrier of the planetary gear mechanism; a second rotary machine and a drive wheel that are connected to a ring gear of the planetary gear mechanism; and a parking device connected to the ring gear. The power transmission device is configured to positively rotate the first rotary machine at a time a command to disengage the parking device is received and thereafter disengage the parking device, and a direction of the positive rotation is a rotational direction of the carrier rotary-driven by the engine.